scholarly journals A Calculation of Energy Consumption for Residential Air Conditioners using Bin Method in the Vietnamese Climatic Conditions

Author(s):  
Quoc Dung Trinh ◽  
Tuan Anh Vu ◽  
Viet Dzung Nguyen ◽  
Hoang Luong Pham ◽  
Thu Ha Thi Tran
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Francesco Mancini ◽  
Gianluigi Lo Basso

Climate change affects the buildings’ performance, significantly influencing energy consumption, as well as the indoor thermal comfort. As a consequence, the growing outdoor environmental temperatures entail a slight reduction in heating consumption and an increase in cooling consumption, with different overall effects depending on the latitudes. This document focuses attention on the Italian residential sector, considering the current and reduced meteorological data, in anticipation of future climate scenarios. According to a sample of 419 buildings, referring to the climatic conditions of Milan, Florence, Rome, and Naples, the heating and cooling needs are calculated by a simplified dynamic model, in current and future conditions. The effects of the simplest climate adaptation measure, represented by the introduction of new air conditioners, have been also evaluated. The simulations results show an important reduction in complex energy consumption (Milan −6%, Florence −22%, Rome −25%, Naples −30%), due to the greater incidence of heating demand in the Italian context. However, the increase in air conditioning electrical consumption over the hot season (Milan +11%, Florence +20%, Rome +19%, Naples +16%) can play a critical role for the electrical system; for that reason, the introduction of photovoltaic arrays as a compensatory measure have been analysed.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2012 ◽  
Vol 7 (3) ◽  
pp. 23-32 ◽  
Author(s):  
Miloslav Bagoňa ◽  
Dušan Katunský ◽  
Martin Lopušniak ◽  
Marián Vertaľ

Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


2019 ◽  
Vol 17 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Javad Riahi Zaniani ◽  
Shahab Taghipour Ghahfarokhi ◽  
Mehdi Jahangiri ◽  
Akbar Alidadi Shamsabadi

Purpose This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province. Design/methodology/approach Having used the ideas of Climate Consultant software, the basic designing was conducted by Design Builder Software, and the cooling and heating loads and lighting tools and equipment were calculated. Then, the amount of consuming of heating, cooling and lighting load of the building was optimized through insulation of walls and ceiling, using green roof, double glazing UPVC windows, light intensity sensor and variable refrigerant flow (VRF) system. Findings Simulation results for the stated scenarios showed an annual reduction in energy consumption of 21.1, 7.9, 26.41, 27.3 and 72.3 per cent, respectively. Also, by combining all the five scenarios, an optimal state was achieved which, from the results, brought about an annual reduction of 86.9 per cent in the energy consumption. Originality/value The authors hope that the results of the current paper could be helpful for designers and engineers in reduction of energy consumption for designing a building in similar climatic conditions.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Farid Sartipi ◽  

With the growing attention to smart buildings, local governments are seeking practical ways to optimize the energy consumption of commercial buildings. An ideal smart building is capable of monitoring its own energy consumption and adjusting the operation of electric devices, being lighting and air conditioners, based on the occupant behaviour. In this study, data had been obtained from the monitoring sensors in a commercial building located in the heart of Sydney from 2013 until 2020 on a 15-minute time intervals. The data derivation and analysis are intrinsically static at the moment which makes it difficult for building management to make instantaneous decision regarding the measures to be taken for a lower energy consumption. Using data analysis and visualization tools in Tableau, this study provides detailed insights about the trends in energy consumption in the given building. The outcomes facilitate the decision making for building management and can be seen as a milestone towards a dynamic optimization protocol in a bigger picture which is introduced in the second part of this study.


2018 ◽  
Author(s):  
Sara Torabi Moghadam ◽  
Silvia Coccolo ◽  
Guglielmina Mutani ◽  
Patrizia Lombardi ◽  
Jean Louis Scartezzini ◽  
...  

The spatial visualization is a very useful tool to help decision-makers in the urban planning process to create future energy transition strategies, implementing energy efficiency and renewable energy technologies in the context of sustainable cities. Statistical methods are often used to understand the driving parameters of energy consumption but rarely used to evaluate future urban renovation scenarios. Simulating whole cities using energy demand softwares can be very extensive in terms of computer resources and data collection. A new methodology, using city archetypes is proposed, here, to simulate the energy consumption of urban areas including urban energy planning scenarios. The objective of this paper is to present an innovative solution for the computation and visualization of energy saving at the city scale.The energy demand of cities, as well as the micro-climatic conditions, are calculated by using a simplified 3D model designed as function of the city urban geometrical and physical characteristics. Data are extracted from a GIS database that was used in a previous study. In this paper, we showed how the number of buildings to be simulated can be drastically reduced without affecting the accuracy of the results. This model is then used to evaluate the influence of two set of renovation solutions. The energy consumption are then integrated back in the GIS to identify the areas in the city where refurbishment works are needed more rapidly. The city of Settimo Torinese (Italy) is used as a demonstrator for the proposed methodology, which can be applied to all cities worldwide with limited amount of information.


2019 ◽  
Vol 3 (3) ◽  
pp. 267
Author(s):  
Andi Asrul Sani ◽  
Adelia Enjelina Matondang ◽  
Guruh Kristiadi Kurniawan ◽  
Anggi Mardiyanto

Abstract: The use of glass material should consider the comfort of space in the building. Field of glass is needed as natural lighting and visual facilities between the occupants and the surrounding environment. Its function as natural lighting is often accompanied by an increase in temperature in buildings, considering that Indonesia is a tropical country. Building temperatures that increase due to incoming sunlight can cause discomfort to building occupants. Such conditions make building occupants use air conditioner (AC). The use of air conditioners can increase the value of building energy consumption. For this reason, research on the value of heat transfer in buildings or the value of OTTV (Overall Thermal Transfer Value). OTTV value calculation is done by manual calculation. Bandar Lampung City lecture building at the Sumatra Institute of Technology was chosen as the object of this study. From the results of the study found that the value of heat transfer of a building or OTTV (Overall Thermal Transfer Value) is influenced by the factor of the ratio of the window area to the facade or WWR (Window Wall Ratio) and the shading factor (Shading Coefficient).(Keywords: Keyword: energy consumption, building energy, glass. Abstract: Penggunaan material kaca semestinya mempertimbangkan kenyamanan ruang dalam bangunan. Bidang kaca diperlukan sebagai pencahayaan alami dan sarana visual antara penghuni dan lingkungan sekitar. Fungsinya sebagai pencahayaan alami seringkali disertai dengan peningkatan temperatur pada bangunan, mengingat Indonesia merupakan negara yang beriklim tropis. Temperatur bangunan yang meningkat akibat dari radiasi sinar matahari yang masuk dapat menyebabkan ketidaknyamanan bagi penghuni bangunan. Kondisi seperti itu membuat penghuni bangunan menggunakan air conditioner (AC). Penggunaan air conditioner tersebut dapat meningkatkan nilai konsumsi energi bangunan. Untuk  itu dilakukan penelitian mengenai nilai perpindahan panas dalam bangunan atau nilai OTTV (Overall Thermal Transfer Value). Penghitungan nilai OTTV dilakukan dengan penghitungan manual. Gedung kuliah Kota Bandar Lampung di Institut Teknologi Sumatera di pilih sebagai objek dalam penelitian ini. Dari hasil penelitian ditemukan bahwa nilai perpindahan panas suatu bangunan atau OTTV (Overall Thermal Transfer Value) dipengaruhi oleh faktor nilai perbandingan luas jendela terhadap bidang fasad atau WWR (Window Wall Ratio) dan faktor pembayangan (Shading Coefficient).Kata kunci : konsumsi energi, energi bangunan, kaca.


Sign in / Sign up

Export Citation Format

Share Document