scholarly journals To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

Author(s):  
Pradeep G. Kini ◽  
Naresh Kumar Garg ◽  
Kiran Kamath
2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 330
Author(s):  
Yu Dong ◽  
Rong Wang ◽  
Jing Xue ◽  
Jingran Shao ◽  
Haibo Guo

The aims of the paper were to clarify whether office buildings in the severe cold and cold regions are overheating, especially those with natural ventilation, and whether potential overheating is related to the building materials. The severe cold and cold regions of China were considered to be cool regions during summer. However, with global warming, improvements in the thermal performance of the building envelope and the urban heat island effect, office buildings in these regions are showing different degrees of overheating during summer. Two office building materials commonly used in this area, cross laminated timber (CLT) and concrete block, were simulated in this study. With reference to the overheating standard, the degree of overheating in six cities in the severe cold and cold regions was quantitatively analysed and the extent of overheating for the two building materials was compared. Finally, the influence of thermal insulation on building overheating is discussed, and some suggestions are put forward to improve the relevant national regulations in China. The results show that office buildings in the severe cold and cold regions experience overheating during summer, and CLT buildings are more prone to overheating than concrete buildings during summer. This is attributable to the different thermal mass of the materials. Thick insulation does increase the risk of building overheating, and the effect on concrete buildings is more pronounced. Concrete buildings with an insulation layer can experience overheating for 27–71 h more than buildings without an insulation layer. Insulation on CLT buildings only results in an increase of 11–37 h. When considering the current situation with summer overheating in the severe cold and cold regions, relevant codes should also be modified and improved accordingly to guide building design, so as to achieve low-carbon and energy-saving goals.


Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 409-422
Author(s):  
Haihua Zhang ◽  
Yao Tao ◽  
Long Shi

A solar chimney is a renewable energy system used to enhance the natural ventilation in a building based on solar and wind energy. It is one of the most representative solar-assisted passive ventilation systems attached to the building envelope. It performs exceptionally in enhancing natural ventilation and improving thermal comfort under certain climate conditions. The ventilation enhancement of solar chimneys has been widely studied numerically and experimentally. The assessment of solar chimney systems based on buoyancy ventilation relies heavily on the natural environment, experimental environment, and performance prediction methods, bringing great difficulties to quantitative analysis and parameterization research. With the increase in volume and complexity of modern building structures, current studies of solar chimneys have not yet obtained a unified design strategy and corresponding guidance. Meanwhile, combining a solar chimney with other passive ventilation systems has attracted much attention. The solar chimney-based integrated passive-assisted ventilation systems prolong the service life of an independent system and strengthen the ventilation ability for indoor cooling and heating. However, the progress is still slow regarding expanded applications and related research of solar chimneys in large volume and multi-layer buildings, and contradictory conclusions appear due to the inherent complexity of the system.


2021 ◽  
Vol 13 (2) ◽  
pp. 679
Author(s):  
Roya Aeinehvand ◽  
Amiraslan Darvish ◽  
Abdollah Baghaei Daemei ◽  
Shima Barati ◽  
Asma Jamali ◽  
...  

Today, renewable resources and the crucial role of passive strategies in energy efficiency in the building sector toward the sustainable development goals are more indispensable than ever. Natural ventilation has traditionally been considered as one of the most fundamental techniques to decrease energy usage by building dwellers and designers. The main purpose of the present study is to enhance the natural ventilation rates in an existing six-story residential building situated in the humid climate of Rasht during the summertime. On this basis, two types of ventilation systems, the Double-Skin Facade Twin Face System (DSF-TFS) and Single-Sided Wind Tower (SSWT), were simulated through DesignBuilder version 4.5. Then, two types of additional ventilation systems were proposed in order to accelerate the airflow, including four-sided as well as multi-opening wind towers. The wind foldable directions were at about 45 degrees (northwest to southeast). The simulation results show that SSWT could have a better performance than the aforementioned systems by about 38%. Therefore, the multi-opening system was able to enhance the ventilation rate by approximately 10% during the summertime.


2013 ◽  
Vol 787 ◽  
pp. 711-716
Author(s):  
Daryanto ◽  
Eko Budihardjo ◽  
Wahyu Setyabudi ◽  
Gagoek Hardiman

There was an indication that high rise buildings in Jakarta was not designed based on energy conservation principles. The most important aspects of the high-rise buildings is energy saving technology located in the building envelope design. Building envelope with a full glass design functions for widening view and enhancing natural lights, even though but it is also increasing energy consumption and thermal discomfort due to the intensity of solar radiation in hot humid climates. During the current decade, the development of double building envelope type (Double Skin Façade: DSF) seemed more just to improve the aesthetics and the use of natural light, while the wind and thermal performance aspects were still lack of serious consideration. Those aspects will be chosen as the subject matter in this research. The research was aimed to investigate and compare the value of heat transfer in the building envelope of high-rise office buildings. Samples were taken from five DSF buildings, with closed and open cavity. CFD software is used for simulation of the five different models of DSF. The research proves that the high-rise office buildings as the research object in Jakarta do not apply energy conservation principle. The utilization of wind in the DSF cavity can reduce temperature and relieve the burden of air conditioning systems that is energy save. An important finding of the research is the need for ventilation in the design of a double skin at high-rise office buildings in the humid tropics.


2018 ◽  
Vol 16 (1) ◽  
pp. 24-31
Author(s):  
Wasiska Iyati ◽  
◽  
Eryani Nurma Yulita ◽  
Jusuf Thojib ◽  
Heru Sufianto ◽  
...  

The narrow land in big cities such as Jakarta, increases the amount of high rise building, especially multi-storey office building. Office building consumes much energy to provide air conditioning to meet the thermal comfort inside the building. On the other hand, the building shape, building envelope, and building orientation to the sun's position are the main factors in building design aspects that affect the amount of cooling load. This study aims to investigate the impact of the aspect ratio or the ratio of the longer dimension of an oblong plan to the shorter, on external heat gain of multi-storey office building. Variables examined include the transparent and solid area of building envelope, the total area of the surface of the building envelope in any orientation, and the volume of the building, as well as the influence of those proportion on the external heat gain. This study uses mathematical calculations to predict the cooling load of the building, particularly external heat gain through the walls, roof and glass, as well as comparative analysis of models studied. The study also aims to generate the design criteria of building form and proportion of multi-storey office buildings envelope with lower external heat gain. In Jakarta climatic conditions, the result on rectangular building plan with aspect ratio of 1 to 4 shows that the external heat gain did not differ significantly, and the smallest heat gain is found on the aspect ratio of 1.8. Results also showed that the greater aspect ratio, the greater reduction of external heat gain obtained by changing the orientation of the longest side facing east-west into the north-south, about 2.79% up to 42.14% on the aspect ratio of 1.1 to 4. In addition, it is known that in same building volume, changing the number of floors from 10 to 50 can improve the external heat gain almost twice.


Author(s):  
Nurul Akmam Naamandadin ◽  
◽  
Norrazman Zaiha Zainol ◽  
Siti Nur Aishah Mohd Noor ◽  
Abdul Razak Sapian ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


Sign in / Sign up

Export Citation Format

Share Document