scholarly journals Assessment of Summer Overheating in Concrete Block and Cross Laminated Timber Office Buildings in the Severe Cold and Cold Regions of China

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 330
Author(s):  
Yu Dong ◽  
Rong Wang ◽  
Jing Xue ◽  
Jingran Shao ◽  
Haibo Guo

The aims of the paper were to clarify whether office buildings in the severe cold and cold regions are overheating, especially those with natural ventilation, and whether potential overheating is related to the building materials. The severe cold and cold regions of China were considered to be cool regions during summer. However, with global warming, improvements in the thermal performance of the building envelope and the urban heat island effect, office buildings in these regions are showing different degrees of overheating during summer. Two office building materials commonly used in this area, cross laminated timber (CLT) and concrete block, were simulated in this study. With reference to the overheating standard, the degree of overheating in six cities in the severe cold and cold regions was quantitatively analysed and the extent of overheating for the two building materials was compared. Finally, the influence of thermal insulation on building overheating is discussed, and some suggestions are put forward to improve the relevant national regulations in China. The results show that office buildings in the severe cold and cold regions experience overheating during summer, and CLT buildings are more prone to overheating than concrete buildings during summer. This is attributable to the different thermal mass of the materials. Thick insulation does increase the risk of building overheating, and the effect on concrete buildings is more pronounced. Concrete buildings with an insulation layer can experience overheating for 27–71 h more than buildings without an insulation layer. Insulation on CLT buildings only results in an increase of 11–37 h. When considering the current situation with summer overheating in the severe cold and cold regions, relevant codes should also be modified and improved accordingly to guide building design, so as to achieve low-carbon and energy-saving goals.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6305
Author(s):  
Haibo Guo ◽  
Lu Huang ◽  
Wenjie Song ◽  
Xinyue Wang ◽  
Hongnan Wang ◽  
...  

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.


2014 ◽  
Vol 507 ◽  
pp. 92-96
Author(s):  
Yao Fu ◽  
Ying Zhang

Abstract:This paper interpreted the comfort of office buildings in cold regions in the view of architecture. To make the architect to build a people-centered thinking in architectural design; The analysis of design start discussions from the relation between comfort and architectural design, through building orientation, building envelope structure, indoor fresh air supply and other elements to put forward designing direction in cold region office building .


2018 ◽  
Vol 16 (1) ◽  
pp. 24-31
Author(s):  
Wasiska Iyati ◽  
◽  
Eryani Nurma Yulita ◽  
Jusuf Thojib ◽  
Heru Sufianto ◽  
...  

The narrow land in big cities such as Jakarta, increases the amount of high rise building, especially multi-storey office building. Office building consumes much energy to provide air conditioning to meet the thermal comfort inside the building. On the other hand, the building shape, building envelope, and building orientation to the sun's position are the main factors in building design aspects that affect the amount of cooling load. This study aims to investigate the impact of the aspect ratio or the ratio of the longer dimension of an oblong plan to the shorter, on external heat gain of multi-storey office building. Variables examined include the transparent and solid area of building envelope, the total area of the surface of the building envelope in any orientation, and the volume of the building, as well as the influence of those proportion on the external heat gain. This study uses mathematical calculations to predict the cooling load of the building, particularly external heat gain through the walls, roof and glass, as well as comparative analysis of models studied. The study also aims to generate the design criteria of building form and proportion of multi-storey office buildings envelope with lower external heat gain. In Jakarta climatic conditions, the result on rectangular building plan with aspect ratio of 1 to 4 shows that the external heat gain did not differ significantly, and the smallest heat gain is found on the aspect ratio of 1.8. Results also showed that the greater aspect ratio, the greater reduction of external heat gain obtained by changing the orientation of the longest side facing east-west into the north-south, about 2.79% up to 42.14% on the aspect ratio of 1.1 to 4. In addition, it is known that in same building volume, changing the number of floors from 10 to 50 can improve the external heat gain almost twice.


2015 ◽  
Author(s):  
A. Idris ◽  
B. P. Huynh ◽  
Z. Abdullah

Ventilation is a process of changing air in an enclosed space. Air should continuously be withdrawn and replaced by fresh air from a clean external source to maintain internal good air quality, which may referred to air quality within and around the building structures. In natural ventilation the air flow is due through cracks in the building envelope or purposely installed openings. Its can save significant amount of fossil fuel based energy by reducing the needs for mechanical ventilation and air conditioning. Numerical predictions of air velocities and the flow patterns inside the building are determined. To achieve optimum efficiency of natural ventilation, the building design should start from the climatic conditions and orography of the construction to ensure the building permeability to the outside airflow to absorb heat from indoors to reduce temperatures. Effective ventilation in a building will affects the occupant health and productivity. In this work, computational simulation is performed on a real-sized box-room with dimensions 5 m × 5 m × 5 m. Single-sided ventilation is considered whereby openings are located only on the same wall. Two opening of the total area 4 m2 are differently arranged, resulting in 16 configurations to be investigated. A logarithmic wind profile upwind of the building is employed. A commercial Computational Fluid Dynamics (CFD) software package CFD-ACE of ESI group is used. A Reynolds Average Navier Stokes (RANS) turbulence model & LES turbulence model are used to predict the air’s flow rate and air flow pattern. The governing equations for large eddy motion were obtained by filtering the Navier-Stokes and continuity equations. The computational domain was constructed had a height of 4H, width of 9H and length of 13H (H=5m), sufficiently large to avoid disturbance of air flow around the building. From the overall results, the lowest and the highest ventilation rates were obtained with windward opening and leeward opening respectively. The location and arrangement of opening affects ventilation and air flow pattern.


2020 ◽  
Vol 4 (3) ◽  
pp. 276
Author(s):  
Sri Novianthi Pratiwi

In building design, the selection of building materials is one aspect that needs to be considered. Building materials are components that require energy in the manufacturing process. In the process of building material production, the use of energy at each stage becomes one of the parameters of CO2 carbon emission levels. The higher the use of fossil energy, the higher the CO2 emissions and the risk of causing global warming. Bricks, concrete blocks, and lightweight bricks are the types of materials commonly used to make building walls. The selection of wall materials is still largely related to price or aesthetic considerations, but the assessment of the level of environmental friendliness is still lacking in attention. This study tries to analyse the life cycle of energy in wall materials (bricks, concrete blocks and lightweight bricks). From the research results obtained, concrete block is the lowest material in the use of production energy.


2019 ◽  
Vol 11 (12) ◽  
pp. 3296
Author(s):  
Parastoo Pourvahidi ◽  
Polat Hancer

Unfortunately, most Iranian contemporary buildings in different climatic regions are constructed in the same way, with no consideration for climatic comfort. Electrical equipment for cooling and heating in Iran is easy to use and cheap. However, all of the natural resources, such as gas and oil, will one day be depleted, so how will future generations cope? Architects need to create a sample model for each climatic region, in which spaces are arranged to maximize thermal comfort periods, with a passive design. This research conducts an environmental analysis of traditional Iranian buildings in the hot-humid, temperate-humid, and cool climatic regions of Iran, making use of graph theory and a matrix analysis method, both of which are fast and easy to use for the assessment of naturally ventilated buildings. The selected traditional building envelope, spatial organization and seasonal movements of the users in the buildings were examined to determine the design characteristics of traditional buildings. The findings were used to develop a model to help architects to design openings and spatial locations in buildings, according to the natural ventilation and solar control of traditional buildings in the climatic regions of Iran. The model can be used as a guide for contemporary passive building design during the design stage.


2020 ◽  
Vol 10 (5) ◽  
pp. 1582 ◽  
Author(s):  
Haibo Guo ◽  
Siyuan Zhou ◽  
Tongyu Qin ◽  
Lu Huang ◽  
Wenjie Song ◽  
...  

The aim of this research is to investigate the energy sustainability of cross-laminated timber (CLT) and straw residential buildings in the Cold and Severe Cold Regions of China. In the study, three building materials, namely reinforced concrete (RC), CLT, and straw bale, are used separately to design the building envelope in reference residential buildings in different climate zones. The energy consumption during the operation phase of these buildings is then simulated using Integrated Environmental Solutions—Virtual Environment software (IES-VE). The results show that both CLT and straw buildings are more efficient than reinforced concrete with a reduction in energy consumption during the operational phase. Overall, the calculated heating energy-saving ratios for CLT buildings in Hailar, Harbin, Urumchi, Lanzhou, and Beijing are 3.04%, 7.39%, 7.43%, 12.69%, and 13.41%, respectively, when compared with RC. The calculated energy-saving ratios for heating in straw buildings in comparison with RC in these cities are 8.04%, 22.09%, 22.17%, 33.02%, and 34.28%, respectively. The results also reveal that a south orientation of the main building facade results in approximately 5% to 7% energy reduction in comparison with east or west orientations, and as the building height increases, energy consumption decreases gradually. Although RC is the most frequently used building material in Cold and Severe Cold regions in China, as bio-based building materials, there is great potential to promote CLT and straw bale construction in view of the energy sustainability features.


Author(s):  
Mahmoud A. Hassan

Low energy architect is a major target of building researchers and designers worldwide. Obviously, any portion of energy that can be saved in this respect can be directed to industrial processes, if any. Building energy consumption can be reduced through various systems such as air conditioning (a major building energy consumer), lighting, equipment, etc. In regions where energy is limited or scarce, air conditioning would have to be replaced by natural ventilation for the removal of the building heat load for thermal comfort. Also, energy conservation issues are being more important in hot arid regions, especially because the building are consuming more than 60% of electric energy generated and about 65% of this energy is consumed for cooling. There is a set of complex factors, which determine energy needs in building, such as solar radiation, type of A/C systems, building operation, thermal properties of the building envelop... etc. In the present decade the aim is to discuss the advantage of energy efficient building design. There is several ways to reduce the energy consumed for the human comfort process, but what is the most energy efficient or more energy saving from these ways. One of these is the insulation, which can be used for insulating the wall and the roof, which subjected to the large amount of the solar heat gain. The insulation of the roof is intended to maximize resident’s thermal comfort and minimize energy consumption of housing. The parameters, which are effect on the thermal performance of the roof, are the color, general construction, insulation and ventilation. This paper present the effect of insulation of the roof on the amount of energy consumed for different types of insulation in order to select the suitable insulation which give the minimum cost and maximum energy saving. This work was done using an energy software program (Visual DOE). This paper provided suggestions to improve the building construction for the thermal comfort. A parametric analysis was investigated for the economic analysis of various insulating building materials.


Author(s):  
Ravi Kumar ◽  
Helal Ahmad Farhan ◽  
Sukanta Nayak ◽  
Manikant Paswan ◽  
Achintya

Sign in / Sign up

Export Citation Format

Share Document