scholarly journals Energy Efficiency Calculation and Air Handling Unit Design Based on Cooling Load Capacity at MASTEK Mosque

2021 ◽  
Vol 746 (1) ◽  
pp. 012032
Author(s):  
Catur Harsito ◽  
Ariyo Nurachman Satiya Permana ◽  
Finda Sihta
2020 ◽  
pp. 105-109
Author(s):  
Alexander T. Dvoretsky ◽  
Oleg V. Sergeichuk ◽  
Alexander V. Spiridonov

For insolation calculations and design of shading devices (SD) comprising plane sections or fins, the method based on solar maps shall be preferred because of its high descriptiveness and universality.The article describes the algorithm of design of a general-position SD using a solar map and a shade clinometer. An example of calculation of SD geometry parameters such as fin slopes with the horizontal plane and the facade plane, distance between the fins with consideration of screening of the translucent structure during the building cooling period and of transmission of solar radiation during its heating period is given in the article. A simplified formula of a general-position SD energy efficiency calculation is proposed.


Author(s):  
Behzad Omidi Kashani

The present research is about increasing the energy efficiency ratio (EER) in current direct evaporative coolers (DEC) in Iran. Increasing the cooling load and reducing the electrical energy consumption simultaneously (increasing the energy efficiency ratio (EER)) in DEC are the main goals of manufacturers and consumers of this device. When the circulation water pump runs continuously (static state), the circulation water rate is about 1.89 to 2.90 times of the amounts recommended in the reasonable standards. In order to adjust the circulation water rate to the recommended amount by standards, the present study has utilized repetitive cyclic scheduling programs to reduce the circulation rate to the optimal amount, (by turning the circulation pump on and off by dynamic pattern operation). In other words, the circulation pump stays on only for a certain period of a working cycle, and then the pump stays off for the rest of it. The cooling load and EER were measured based on ASHRAE 133 (2015). The results indicated that the cooling load in the dynamic state increased by 5.03 and 6.18 percent compared to the static state at low and high fan speeds, respectively. Moreover, in comparison with the static state, the amount of electrical energy consumed (kW-hr) in the dynamic state decreased by 8.8 and 4.2 percent at low and high fan speeds, respectively. Finally, the coefficient of performance (COP or EER) of the DEC in the dynamic state is increased by 15.16 and 10.78 in comparison with the static state at low and high fan speeds, respectively.


2019 ◽  
Vol 140 ◽  
pp. 10004 ◽  
Author(s):  
Alexandre Bystrov ◽  
Konstantin Vostrov ◽  
Vladimir Frolov ◽  
Anatoli Bistrov

The paper considers a fundamentally new installation for the processing of a droplet-air environment in a non-equilibrium plasma. Its various designs are presented. This installation is built on the basis of pulsed energy devices and is intended for water disinfection and decomposition of dissolved organic compounds, the production of nanomaterials, research in physics and chemistry, etc. We have conducted research of the performance and energy efficiency of this method of processing. It is established that in obtaining the target product, this method of processing has an advantage over the known methods: due to high performance and energy efficiency, as well as the simplicity of this processing method. In addition, the parasitic load capacity of the nanosecond generator is reduced several times, this fact increases the voltage rise rate on the cells of the plasma plasmatrons, which improves performance and energy efficiency.


2011 ◽  
Vol 474-476 ◽  
pp. 1215-1220
Author(s):  
Bin Wang ◽  
Cai Liu ◽  
Xue Li Wu ◽  
Xue Fei Qiao

High-pressure becomes the high pressure unit design main consideration factor to compressive load capacity, security, efficiency, economic and manufacturing process of high-pressure equipment. This article proposes a new pressure piping according to the current high-voltage device development tendency and the future requirement. This new type of pressure pipe can be simplified for pipe casing model. Firstly we establish single, double and multilayer pressure piping model. We push out the multilayer pressure pipe stress formula according to stress situation of the analysis of the knowledge of mechanics of each model. We get this pressure piping withstand by the most intrinsic pressure enhance obviously under each layer within the radius of the cylinder reach the initial limitation of materials and other parameters of model are same through the comparison of the theoretical formula calculation with other general. Pressure pipeline calculated value. The multi-layer pressure piping system's circum radius are smaller than other piping with other pressure piping withstand the same most intrinsic pressure and the most interior radius are the same situation.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ching-Wei Chen ◽  
Yung-Chung Chang

This study covers records of various parameters affecting the power consumption of air-conditioning systems. Using the Support Vector Machine (SVM), the chiller power consumption model, secondary chilled water pump power consumption model, air handling unit fan power consumption model, and air handling unit load model were established. In addition, it was found thatR2of the models all reached 0.998, and the training time was far shorter than that of the neural network. Through genetic programming, a combination of operating parameters with the least power consumption of air conditioning operation was searched. Moreover, the air handling unit load in line with the air conditioning cooling load was predicted. The experimental results show that for the combination of operating parameters with the least power consumption in line with the cooling load obtained through genetic algorithm search, the power consumption of the air conditioning systems under said combination of operating parameters was reduced by 22% compared to the fixed operating parameters, thus indicating significant energy efficiency.


2020 ◽  
Vol 207 ◽  
pp. 01002
Author(s):  
Slav Valchev ◽  
Ivan Mihaylov

Object of the present study is an experimental determination of energy efficiency parameters of air handling unit with integrated air to air heat exchanger: effectiveness of air to air heat exchanger, coefficient of performance and specific fan power of air handling unit. A daily performance of air handling unit is conducted. Effectiveness of supply side of air to air heat exchanger in range of 42.4 % to 52.5 % is received. Coefficient of performance in range of 1.50 to 2.08 and specific fan power of air handling unit in range of 1.39 kW/(m3/s) to 2.08 kW/(m3/s) are received. It was found experimentally that effectiveness of air to air heat exchanger depends on values of mass flow of supply and the exhaust air. High values of mass flow of the exhaust air responds to high effectiveness of supply side of air to air heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document