scholarly journals Study on slope reinforcement scheme of roadbed under relatively large height difference conditions

2021 ◽  
Vol 804 (2) ◽  
pp. 022074
Author(s):  
Jin Qian ◽  
Xiaoling He ◽  
Dejun Liu
2020 ◽  
Vol 198 ◽  
pp. 02028
Author(s):  
Chang-yi Yu ◽  
Ming-yue Lu

With the increasing requirements of environmental protection, the slope reinforcement method is becoming environment-friendly. In recent years, more and more attention has been paid to the study of slope reinforcement by vegetation, and the mechanism of vegetation reinforcement has been initially established, but it is not common to study vegetation reinforcement by numerical reappearance. On the basis of reviewing the mechanism of slope reinforcement by vegetation, this paper studies the vegetation reinforcement scheme of a slope by finite element method. The results show that the finite element method can be used for vegetation reinforcement simulation, and the simulation results are combined with reality. The method in this paper provides a reference for the analysis of similar problems, and also provides a reliable analysis tool for the analysis of slope reinforced by vegetation.


2019 ◽  
Vol 14 (6) ◽  
pp. 957-966
Author(s):  
Richard L. Cahanin IV ◽  
John R. Jefferson ◽  
Timothy W. Flynn ◽  
Nicholas Goyeneche

2021 ◽  
pp. 1-1
Author(s):  
Smadar Boim ◽  
Gilad Even-Tzur ◽  
Itzik Klein
Keyword(s):  

2021 ◽  
Vol 28 (1) ◽  
pp. 426-436
Author(s):  
Zelin Ding ◽  
Xuanyi Zhu ◽  
Hongyang Zhang ◽  
Hanlin Ban ◽  
Yuan Chen

Abstract Geological conditions play a decisive role in the stability of arch dam engineering, and the asymmetric geological conditions of the abutment have a very negative impact on the safety of the arch dam. This article takes Lizhou arch dam as the research object, and determines that the arch dam is preliminarily affected by the geological asymmetric characteristics. Through the geomechanical model test method, the overload failure test of the Lizhou arch dam was carried out, and the resistance body, the instability deformation of the structural plane of the two dam abutments, and the influence of each structural plane on the dam body are obtained, and the safety factor is determined. According to the test results under the condition of asymmetric foundation of arch dam, for the structural plane which affects the geological asymmetry of the arch dam, the corresponding reinforcement measures are carried out. The feasibility of the reinforcement scheme is verified by the finite element method, and the safety factor after reinforcement is obtained. According to the results, it is suggested that some engineering measures can be taken to reduce the geological asymmetry between the two banks and ensure the safe and stable operation of the arch dam in the future.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2393
Author(s):  
Artur Trembułowicz ◽  
Agata Sabik ◽  
Miłosz Grodzicki

The surface of quasi-hexagonal reconstructed Au(100) is used as the template for monolayer pentacene (PEN) self-assembly. The system is characterized by means of scanning tunneling microscopy at room temperature and under an ultra-high vacuum. A new modulated pattern of molecules with long molecular axes (MA) arranged along hex stripes is found. The characteristic features of the hex reconstruction are preserved herein. The assembly with MA across the hex rows leads to an unmodulated structure, where the molecular layer does not recreate the buckled hex phase. The presence of the molecules partly lifts the reconstruction—i.e., the gold hex phase is transformed into a (1×1) phase. The arrangement of PEN on the gold (1×1) structure is the same as that of the surrounding molecular domain on the reconstructed surface. The apparent height difference between phases allows for the distinction of the state of the underlying gold surface.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Takashi Yatsui ◽  
Wataru Nomura ◽  
Motoichi Ohtsu

We compared dressed-photon-phonon (DPP) etching to conventional photochemical etching and, using a numerical analysis of topographic images of the resultant etched polymethyl methacrylate (PMMA) substrate, we determined that the DPP etching resulted in the selective etching of smaller scale structures in comparison with the conventional photochemical etching. We investigated the wavelength dependence of the PMMA substrate etching using an O2 gas. As the dissociation energy of O2 is 5.12 eV, we applied a continuous-wave (CW) He-Cd laser (λ= 325 nm, 3.81 eV) for the DPP etching and a 5th-harmonic Nd:YAG laser (λ= 213 nm, 5.82 eV) for the conventional photochemical etching. From the obtained atomic force microscope images, we confirmed a reduction in surface roughness, Ra, in both cases. However, based on calculations involving the standard deviation of the height difference function, we confirmed that the conventional photochemical etching method etched the larger scale structures only, while the DPP etching process selectively etched the smaller scale features.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
P. López-Jarana ◽  
C. M. Díaz-Castro ◽  
A. Falcão ◽  
C. Falcão ◽  
J. V. Ríos-Santos ◽  
...  

Abstract Background The objective of this study was to measure two parameters involved in tri-dimensional implant planning: the position of the buccal and palatal bone wall and the palatal thickness. Methods Cone beam computed tomography (CBCT) images (Planmeca ProMax 3D) of 403 teeth (208 upper teeth and 195 lower teeth) were obtained from 49 patients referred to the Dental School of Seville from January to December 2014. The height difference between the palatal and buccal walls was measured on the most coronal point of both walls. The thickness of the palatal wall was measured 2 mm from the most coronal point of the palatal wall. Results The mean values in the maxilla were 1.7 ± 0.9 mm for central and lateral incisors, 2.2 ± 1.7 mm for canines, 1.6 ± 0.9 mm for premolars and 1.9 ± 1.5 mm for molars. In the lower jaw, the mean values were 1.3 ± 0.8 mm for incisors, 1.7 ± 1.2 mm for canines, 2.3 ± 1.3 mm for premolars, and 2.6 ± 1.7 mm for molars. In the upper jaw, more than 55% of maxillary teeth (excluding second premolars and molars) presented mean height differences greater than 1 mm. In the mandible, more than 60% of incisors showed a buccal bone thickness of 1 mm from the apical to lingual aspect. All teeth except the second premolar presented a buccal wall located more than 1 mm more apically than the lingual bone wall. Conclusions The buccal bone wall is located more apically (greater than 1 mm) than the palatal or lingual table in most of the cases assessed. The thickness of the palatal or lingual table is also less than 2 mm in the maxilla and mandible, except in the upper canines and premolars and the lower molars.


2021 ◽  
Vol 87 (9) ◽  
pp. 615-630
Author(s):  
Longjie Ye ◽  
Ka Zhang ◽  
Wen Xiao ◽  
Yehua Sheng ◽  
Dong Su ◽  
...  

This paper proposes a Gaussian mixture model of a ground filtering method based on hierarchical curvature constraints. Firstly, the thin plate spline function is iteratively applied to interpolate the reference surface. Secondly, gradually changing grid size and curvature threshold are used to construct hierarchical constraints. Finally, an adaptive height difference classifier based on the Gaussian mixture model is proposed. Using the latent variables obtained by the expectation-maximization algorithm, the posterior probability of each point is computed. As a result, ground and objects can be marked separately according to the calculated possibility. 15 data samples provided by the International Society for Photogrammetry and Remote Sensing are used to verify the proposed method, which is also compared with eight classical filtering algorithms. Experimental results demonstrate that the average total errors and average Cohen's kappa coefficient of the proposed method are 6.91% and 80.9%, respectively. In general, it has better performance in areas with terrain discontinuities and bridges.


Sign in / Sign up

Export Citation Format

Share Document