scholarly journals Experimental study of the shear failure of granite based on full-field-strain monitoring using digital image correlation

2021 ◽  
Vol 861 (2) ◽  
pp. 022061
Author(s):  
Jia Qi Li ◽  
Peng Liang ◽  
Lin Sun ◽  
Xu Long Yao ◽  
Jun Ling Liu ◽  
...  
2016 ◽  
Vol 140 ◽  
pp. 192-201 ◽  
Author(s):  
Mahoor Mehdikhani ◽  
Mohammadali Aravand ◽  
Baris Sabuncuoglu ◽  
Michaël G. Callens ◽  
Stepan V. Lomov ◽  
...  

2020 ◽  
Vol 1 (4) ◽  
pp. 174-192
Author(s):  
Nedaa Amraish ◽  
Andreas Reisinger ◽  
Dieter H. Pahr

Digital image correlation (DIC) systems have been used in many engineering fields to obtain surface full-field strain distribution. However, noise affects the accuracy and precision of the measurements due to many factors. The aim of this study was to find out how different filtering options; namely, simple mean filtering, Gaussian mean filtering and Gaussian low-pass filtering (LPF), reduce noise while maintaining the full-field information based on constant, linear and quadratic strain fields. Investigations are done in two steps. First, linear and quadratic strain fields with and without noise are simulated and projected to discrete measurement points which build up strain window sizes consisting of 6×5, 12×11, and 26×17 points. Optimal filter sizes are computed for each filter strategy, strain field type, and strain windows size, with minimal impairment of the signal information. Second, these filter sizes are used to filter full-field strain distributions of steel samples under tensile tests by using an ARAMIS DIC system to show their practical applicability. Results for the first part show that for a typical 12×11 strain window, simple mean filtering achieves an error reduction of 66–69%, Gaussian mean filtering of 72–75%, and Gaussian LPF of 66–69%. If optimized filters are used for DIC measurements on steel samples, the total strain error can be reduced from initial 240−300 μstrain to 100–150 μstrain. In conclusion, the noise-floor of DIC signals is considerable and the preferable filters were a simple mean with s*¯ = 2, a Gaussian mean with σ*¯ = 1.7, and a Gaussian LPF with D0*¯ = 2.5 in the examined cases.


2017 ◽  
Vol 28 (3) ◽  
pp. 035007 ◽  
Author(s):  
Wei Wang ◽  
Chenghai Xu ◽  
Hua Jin ◽  
Songhe Meng ◽  
Yumin Zhang ◽  
...  

2019 ◽  
Vol 9 (14) ◽  
pp. 2828 ◽  
Author(s):  
Robert Blenkinsopp ◽  
Jon Roberts ◽  
Andy Harland ◽  
Paul Sherratt ◽  
Paul Smith ◽  
...  

Numerous variables can introduce errors into the measurement chain of a digital image correlation (DIC) system. These can be grouped into two categories: measurement quality and the correlation principle. Although previous studies have attempted to investigate each error source in isolation, there are still no comprehensive, standardized procedures for calibrating DIC systems for full-field strain measurement. The aim of this study, therefore, was to develop an applied experimental method that would enable a DIC practitioner to perform a traceable full-field measurement calibration to evaluate the accuracy of a particular system setup in a real-world environment related to their specific application. A sequence of Speckle Pattern Boards (SPB) that included artificial deformations of the speckle pattern were created, allowing for the calibration of in-plane deformations. Multiple deformation stages (from 10% to 50%) were created and measured using the GOM ARAMIS system; the results were analysed and statistical techniques were used to determine the accuracy. The measured strain was found to be slightly over-estimated (nominally by 0.02%), with a typical measurement error range of 0.34% strain at a 95% confidence interval. Location within the measurement volume did not have a significant effect on error distributions. It was concluded that the methods developed could be used to calibrate a DIC system in-situ for full-field measurements of large deformations. The approach could also be used to benchmark different DIC systems against each other or allow operators to better understand the influence of particular measurement variables on the measurement accuracy.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 384 ◽  
Author(s):  
Maria Luisa Ruspi ◽  
Marco Palanca ◽  
Luca Cristofolini ◽  
Christian Liebsch ◽  
Tomaso Villa ◽  
...  

While the non-linear behavior of spine segments has been extensively investigated in the past, the behavior of the Anterior Longitudinal Ligament (ALL) and its contribution during flexion and extension has never been studied considering the spine as a whole. The aims of the present study were to exploit Digital Image Correlation (DIC) to: (I) characterize the strain distribution on the ALL during flexion-extension, (II) compare the strain on specific regions of interest (ROI) of the ALL in front of the vertebra and of the intervertebral disc, (III) analyze the non-linear relationship between the surface strain and the imposed rotation and the resultant moment. Three specimens consisting of 6 functional spinal units (FSUs) were tested in flexion-extension. The full-field strain maps were measured on the surface of the ALL, and the most strained areas were investigated in detail. The DIC-measured strains showed different values of peak strain in correspondence with the vertebra and the disc but the average over the ROIs was of the same order of magnitude. The strain-moment curves showed a non-linear response like the moment-angle curves: in flexion the slope of the strain-moment curve was greater than in extension and with a more abrupt change of slope. To the authors’ knowledge, this is the first study addressing, by means of a full-field strain measurement, the non-linear contribution of the ALL to spine biomechanics. This study was limited to only three specimens; hence the results must be taken with caution. This information could be used in the future to build more realistic numerical models of the spine.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3530
Author(s):  
Xu Liu ◽  
Rongsheng Lu

The testing of the mechanical properties of materials on a small scale is difficult because of the small specimen size and the difficulty of measuring the full-field strain. To tackle this problem, a testing system for investigating the mechanical properties of small-scale specimens based on the three-dimensional (3D) microscopic digital image correlation (DIC) combined with a micro tensile machine is proposed. Firstly, the testing system is described in detail, including the design of the micro tensile machine and the 3D microscopic DIC method. Then, the effects of different shape functions on the matching accuracy obtained by the inverse compositional Gauss–Newton (IC-GN) algorithm are investigated and the numerical experiment results verify that the error due to under matched shape functions is far larger than that of overmatched shape functions. The reprojection error is shown to be smaller than before when employing the modified iteratively weighted radial alignment constraint method. Both displacement and uniaxial measurements were performed to demonstrate the 3D microscopic DIC method and the testing system built. The experimental results confirm that the testing system built can accurately measure the full-field strain and mechanical properties of small-scale specimens.


Sign in / Sign up

Export Citation Format

Share Document