scholarly journals Mortar layer void detection of ballastless track using the impact echo method based on support vector machine

2021 ◽  
Vol 861 (7) ◽  
pp. 072022
Author(s):  
Shengteng Li ◽  
Yadong Xue ◽  
Kai Shen ◽  
Xiaofei Wang ◽  
Wei Luo
2021 ◽  
Vol 227 ◽  
pp. 111429
Author(s):  
Wei Jiang ◽  
Youjun Xie ◽  
Jianxian Wu ◽  
Jianguang Guo ◽  
Guangcheng Long

2014 ◽  
Vol 584-586 ◽  
pp. 2060-2067 ◽  
Author(s):  
Chang Sheng Zhou ◽  
Ping Wang ◽  
Zhi Peng Hu ◽  
Hao Zhu

Through the honeycomb damage that is appear in unballasted track will affect the safe operation of high-speed train, accurate detection of honeycomb damage is very important. Impact-echo method is a non-destructive testing method. Based on the principle of impact echo, author using the finite element software ANSYS LS-DYNA3D to simulate the impact-echo, testing and verifying the feasibility and accuracy of impact-echo method in discerning unballasted track damage. By analyzing the calculated result of honeycomb damage in slab track and double-block ballastless track, it is shows that: according to back calculate the depth of damage base on the peak value in acceleration spectrum graph, the honeycomb damage in different depth can be accurate located.


Author(s):  
Jia-Bin Zhou ◽  
Yan-Qin Bai ◽  
Yan-Ru Guo ◽  
Hai-Xiang Lin

AbstractIn general, data contain noises which come from faulty instruments, flawed measurements or faulty communication. Learning with data in the context of classification or regression is inevitably affected by noises in the data. In order to remove or greatly reduce the impact of noises, we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine (Lap-TSVM). A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine (IFLap-TSVM) is presented. Moreover, we extend the linear IFLap-TSVM to the nonlinear case by kernel function. The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classifier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization. Experiments with constructed artificial datasets, several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine (TSVM), intuitionistic fuzzy twin support vector machine (IFTSVM) and Lap-TSVM.


2014 ◽  
Vol 1000 ◽  
pp. 285-288 ◽  
Author(s):  
Michal Matysík ◽  
Iveta Plšková ◽  
Zdeněk Chobola

The aim of this paper is to evaluate the possibility of using the Impact-echo method for assessment of extremely long period of frost resistance of ceramic tiles. Sets of ceramic tiles of the Ia class to EN 14 411 B standard made by manufacture RACOs have been analyzed. The ceramic tiles under investigation have been subjected to 500 freeze-thaw-cycle based degradation in compliance with the relevant EN ISO 10545-12 standard. To verify the correctness of the Impact-echo method results, additional physical properties of the ceramic tiles under test have been measured. To analyze the specimen surface condition, we also used Olympus LEXT 3100 confocal scanning microscope. It has been proved that the acoustic method Impact-echo is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.


2016 ◽  
Vol 50 (6) ◽  
pp. 879-884
Author(s):  
Daniela Štefková ◽  
Kristýna Timčaková ◽  
Libor Topolá ◽  
Petr Cikrle

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 381 ◽  
Author(s):  
Yaping Liao ◽  
Junyou Zhang ◽  
Shufeng Wang ◽  
Sixian Li ◽  
Jian Han

Motor vehicle crashes remain a leading cause of life and property loss to society. Autonomous vehicles can mitigate the losses by making appropriate emergency decision, and the crash injury severity prediction model is the basis for autonomous vehicles to make decisions in emergency situations. In this paper, based on the support vector machine (SVM) model and NASS/GES crash data, three SVM crash injury severity prediction models (B-SVM, T-SVM, and BT-SVM) corresponding to braking, turning, and braking + turning respectively are established. The vehicle relative speed (REL_SPEED) and the gross vehicle weight rating (GVWR) are introduced into the impact indicators of the prediction models. Secondly, the ordered logit (OL) and back propagation neural network (BPNN) models are established to validate the accuracy of the SVM models. The results show that the SVM models have the best performance than the other two. Next, the impact of REL_SPEED and GVWR on injury severity is analyzed quantitatively by the sensitivity analysis, the results demonstrate that the increase of REL_SPEED and GVWR will make vehicle crash more serious. Finally, the same crash samples under normal road and environmental conditions are input into B-SVM, T-SVM, and BT-SVM respectively, the output results are compared and analyzed. The results show that with other conditions being the same, as the REL_SPEED increased from the low (0–20 mph) to middle (20–45 mph) and then to the high range (45–75 mph), the best emergency decision with the minimum crash injury severity will gradually transition from braking to turning and then to braking + turning.


Sign in / Sign up

Export Citation Format

Share Document