scholarly journals Impacts of the MJO on Rainfall at Different Seasons in Indonesia

2021 ◽  
Vol 893 (1) ◽  
pp. 012070
Author(s):  
D S Permana ◽  
Supari

Abstract The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability of rainfall in Indonesia, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. This study aims to investigate the general impacts of MJO on rainfall at different seasons in Indonesia, particularly during boreal summer. Impacts of the MJO on daily rainfall anomaly during the four climatic seasons: DJF, MAM, JJA, and SON in Indonesia have been evaluated using in-situ data from 86 stations during 1981 - 2012 and remote sensing data using GPM IMERGV06 from 2001 - 2019. The greatest impact of the MJO on rainfall over Indonesia occurs during the DJF and MAM seasons (austral summer), with the magnitude varying across regions. Enhanced rainfall generally occurs over the western parts of Indonesia on phases 2 to 4, central parts of Indonesia on phase 4, and eastern parts of Indonesia on phases 4 to 5. Conversely, suppressed rainfall generally occurs over the western parts of Indonesia on phases 5 to 8, central parts of Indonesia on phases 6 to 8, and eastern parts of Indonesia on phases 1 to 2 and 6 to 8. In addition, the MJO influence during the JJA and SON seasons are slightly less, in terms of intensity, than during the DJF and MAM seasons, which is likely due to the northward shift of ITCZ and, hence, the intraseasonal oscillation convective envelope during boreal summer. Generally, enhanced rainfall occurs over the western and northern parts of Indonesia on phases 2 to 3, and suppressed rainfall on phases 6 to 7. The results indicate that convectively active MJO may increase the possibility of daily extreme rainfall in particular regions in Indonesia at different seasons.

2019 ◽  
Vol 147 (1) ◽  
pp. 389-406 ◽  
Author(s):  
Casey R. Densmore ◽  
Elizabeth R. Sanabia ◽  
Bradford S. Barrett

AbstractThe quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.


2019 ◽  
Vol 76 (11) ◽  
pp. 3633-3654 ◽  
Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

Abstract Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingxiang Shu ◽  
Asaad Y. Shamseldin ◽  
Evan Weller

AbstractThis study quantifies the impact of atmospheric rivers (ARs) on rainfall in New Zealand. Using an automated AR detection algorithm, daily rainfall records from 654 rain gauges, and various atmospheric reanalysis datasets, we investigate the climatology of ARs, the characteristics of landfalling ARs, the contribution of ARs to annual and seasonal rainfall totals, and extreme rainfall events between 1979 and 2018 across the country. Results indicate that these filamentary synoptic features play an essential role in regional water resources and are responsible for many extreme rainfall events on the western side of mountainous areas and northern New Zealand. In these regions, depending on the season, 40–86% of the rainfall totals and 50–98% of extreme rainfall events are shown to be associated with ARs, with the largest contributions predominantly occurring during the austral summer. Furthermore, the median daily rainfall associated with ARs is 2–3 times than that associated with other storms. The results of this study extend the knowledge on the critical roles of ARs on hydrology and highlight the need for further investigation on the landfalling AR physical processes in relation to global circulation features and AR sources, and hydrological hazards caused by ARs in New Zealand.


2021 ◽  
pp. 1-46
Author(s):  
Xiaojun Guo ◽  
Ning Zhao ◽  
Kazuyoshi Kikuchi ◽  
Tomoe Nasuno ◽  
Masuo Nakano ◽  
...  

AbstractRecent works have revealed that the wintertime atmospheric river (AR) activity is closely related to the 30–60-day tropical intraseasonal variability, yet it remains unclear whether summertime AR activity is also significantly influenced by the intraseasonal variability, often referred to as the boreal summer intraseasonal oscillation (BSISO). Diagnosing the 40-year (1979–2018) ERA5 reanalysis dataset, the present study examines the climatological features of ARs over the Indo-Pacific region during June to October and its associations with the BSISO. Results suggest that the western North Pacific Subtropical High (WNPSH) provides a favorable circulation background for the summertime AR activity, which conveys the moisture from the tropics to midlatitude North Pacific along its periphery. Our analysis reveals that the BSISO has substantial impacts on the occurrence and distribution of ARs. More ARs are found over the western North Pacific (WNP) when the BSISO convective envelope propagates northward to the subtropical regions, while fewer ARs can be seen when convection is suppressed there. Specifically, in phases 7–8, the active BSISO convection over the Philippine Sea induces a low-pressure anomaly and the corresponding anomalous cyclonic circulation, leading to the enhanced poleward moisture transport and more frequent AR activity over the WNP. Moreover, the WNP ARs tend to be longer and have larger sizes during these two phases. It is also found that more frequent occurrence of tropical cyclones in phases 7–8 can significantly enhance the moisture transport and AR occurrence over the WNP.


2021 ◽  
Author(s):  
Junting Wu ◽  
Juan Li ◽  
Zhiwei Zhu ◽  
Pang-Chi Hsu

Abstract The occurrence of summer extreme rainfall over southern China (SCER) is closely related with the boreal summer intraseasonal oscillation (BSISO). Whether the operational models can reasonably predict the BSISO evolution and its modulation on SCER probability is crucial for disaster prevention and mitigation. Here, we find that the skill of subseasonal-to-seasonal (S2S) operational models in predicting the first component of BSISO (BSISO1) might play an important role in determining the forecast skill of SCER. The systematic assessment of reforecast data from the S2S database show that the ECMWF model performs a skillful prediction of BSISO1 index up to 24 days, while the skill of CMA model is about 10 days. Accordingly, the SCER occurrence is correctly predicted by ECMWF (CMA) model at a forecast lead time of ~14 (6) days. The diagnostic results of modeled moisture processes further suggest that the anomalous moisture convergence (advection) induced by the BSISO1 activity serves as the primary (secondary) source of subseasonal predictability of SCER. Once the operational model well predicts the moisture convergence anomaly in the specific phases of BSISO1, the higher skill for the probability prediction of SCER is obtained. The present study implies that a further improvement in predicting the BSISO and its related moisture processes is crucial to facilitating the subseasonal prediction skill of SCER probability.


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Wan-Ru Huang ◽  
Pin-Yi Liu ◽  
Jie Hsu ◽  
Xiuzhen Li ◽  
Liping Deng

This study assessed four near-real-time satellite precipitation products (NRT SPPs) of Global Satellite Mapping of Precipitation (GSMaP)—NRT v6 (hereafter NRT6), NRT v7 (hereafter NRT7), Gauge-NRT v6 (hereafter GNRT6), and Gauge-NRT v7 (hereafter GNRT7)— in representing the daily and monthly rainfall variations over Taiwan, an island with complex terrain. The GNRT products are the gauge-adjusted version of NRT products. Evaluations for warm (May–October) and cold months (November–April) were conducted from May 2017 to April 2020. By using observations from more than 400 surface gauges in Taiwan as a reference, our evaluations showed that GNRT products had a greater error than NRT products in underestimating the monthly mean rainfall, especially during the warm months. Among SPPs, NRT7 performed best in quantitative monthly mean rainfall estimation; however, when examining the daily scale, GNRT6 and GNRT7 were superior, particularly for monitoring stronger (i.e., more intense) rainfall events during warm and cold months, respectively. Spatially, the major improvement from NRT6 to GNRT6 (from NRT7 to GNRT7) in monitoring stronger rainfall events over southwestern Taiwan was revealed during warm (cold) months. From NRT6 to NRT7, the improvement in daily rainfall estimation primarily occurred over southwestern and northwestern Taiwan during the warm and cold months, respectively. Possible explanations for the differences between the ability of SPPs are attributed to the algorithms used in SPPs. These findings highlight that different NRT SPPs of GSMaP should be used for studying or monitoring the rainfall variations over Taiwan for different purposes (e.g., warning of floods in different seasons, studying monthly or daily precipitation features in different seasons, etc.).


2010 ◽  
Vol 31 (8) ◽  
pp. 1192-1204 ◽  
Author(s):  
Hatsuki Fujinami ◽  
Daisuke Hatsuzuka ◽  
Tetsuzo Yasunari ◽  
Taiichi Hayashi ◽  
Toru Terao ◽  
...  

2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


2011 ◽  
Vol 24 (10) ◽  
pp. 2451-2468 ◽  
Author(s):  
Nicholas P. Klingaman ◽  
Steven J. Woolnough ◽  
Hilary Weller ◽  
Julia M. Slingo

Abstract A newly assembled atmosphere–ocean coupled model, called HadKPP, is described and then used to determine the effects of subdaily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intraseasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K-Profile Parameterization ocean boundary layer model. Four 30-member ensembles were performed that vary in ocean vertical resolution between 1 and 10 m and in coupling frequency between 3 and 24 h. The 10-m, 24-h ensemble exhibited roughly 60% of the observed 30–50-day variability in sea surface temperatures and rainfall and very weak northward propagation. Enhancing only the vertical resolution or only the coupling frequency produced modest improvements in variability and just a standing intraseasonal oscillation. Only the 1-m, 3-h configuration generated organized, northward-propagating convection similar to observations. Subdaily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intraseasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical subseasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intraseasonal oscillation resembling observations.


Sign in / Sign up

Export Citation Format

Share Document