scholarly journals QBO Influence on MJO Amplitude over the Maritime Continent: Physical Mechanisms and Seasonality

2019 ◽  
Vol 147 (1) ◽  
pp. 389-406 ◽  
Author(s):  
Casey R. Densmore ◽  
Elizabeth R. Sanabia ◽  
Bradford S. Barrett

AbstractThe quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.

2020 ◽  
Vol 33 (3) ◽  
pp. 805-823 ◽  
Author(s):  
Shuguang Wang

AbstractCharacteristic patterns of precipitation-associated tropical intraseasonal oscillations, including the Madden–Julian oscillation (MJO) and boreal summer intraseasonal oscillation (BSISO), are identified using local empirical orthogonal function (EOF) analysis of the Tropical Rainfall Measuring Mission (TRMM) precipitation data as a function of the day of the year. The explained variances of the EOF analysis show two peaks across the year: one in the middle of the boreal winter corresponding to the MJO and the other in the middle of summer corresponding to the BSISO. Comparing the fractional variance indicates that the BSISO is more coherent than the MJO during the TRMM period. Similar EOF analyses with the outgoing longwave radiation (OLR) confirm this result and indicate that the BSISO is less coherent before the TRMM era (1979–98). In contrast, the MJO exhibits much less decadal variability. A precipitation-based index for tropical intraseasonal oscillation (PII) is derived by projecting bandpass-filtered precipitation anomalies to the two leading EOFs as a function of day of the year. A real-time version that approximates the PII is further developed using precipitation anomalies without any bandpass filtering. It is further shown that this real-time PII index may be used to diagnose precipitation in the subseasonal forecasts.


2008 ◽  
Vol 21 (22) ◽  
pp. 5870-5886 ◽  
Author(s):  
Kathy Pegion ◽  
Ben P. Kirtman

Abstract This study investigates whether air–sea interactions contribute to differences in the predictability of the boreal winter tropical intraseasonal oscillation (TISO) using the NCEP operational climate model. A series of coupled and uncoupled, “perfect” model predictability experiments are performed for 10 strong model intraseasonal events. The uncoupled experiments are forced by prescribed SST containing different types of variability. These experiments are specifically designed to be directly comparable to actual forecasts. Predictability estimates are calculated using three metrics, including one that does not require the use of time filtering. The estimates are compared between these experiments to determine the impact of coupled air–sea interactions on the predictability of the tropical intraseasonal oscillation and the sensitivity of the potential predictability estimates to the different SST forcings. Results from all three metrics are surprisingly similar. They indicate that predictability estimates are longest for precipitation and outgoing longwave radiation (OLR) when the ensemble mean from the coupled model is used. Most importantly, the experiments that contain intraseasonally varying SST consistently predict the control events better than those that do not for precipitation, OLR, 200-hPa zonal wind, and 850-hPa zonal wind after the first 10 days. The uncoupled model is able to predict the TISO with similar skill to that of the coupled model, provided that an SST forecast that includes these intraseasonal variations is used to force the model. This indicates that the intraseasonally varying SSTs are a key factor for increased predictability and presumably better prediction of the TISO.


2011 ◽  
Vol 139 (8) ◽  
pp. 2421-2438 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Kyong-Hwan Seo

AbstractTropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity, frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data. The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30–80 days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks, comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer is very different from that during winter. During summer, the limit is relatively low over regions where the TISV is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South America. The spatial distribution of the limit during winter is approximately the opposite of that during summer. For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions (when ISO signals are strong).


2021 ◽  
Vol 893 (1) ◽  
pp. 012070
Author(s):  
D S Permana ◽  
Supari

Abstract The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability of rainfall in Indonesia, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. This study aims to investigate the general impacts of MJO on rainfall at different seasons in Indonesia, particularly during boreal summer. Impacts of the MJO on daily rainfall anomaly during the four climatic seasons: DJF, MAM, JJA, and SON in Indonesia have been evaluated using in-situ data from 86 stations during 1981 - 2012 and remote sensing data using GPM IMERGV06 from 2001 - 2019. The greatest impact of the MJO on rainfall over Indonesia occurs during the DJF and MAM seasons (austral summer), with the magnitude varying across regions. Enhanced rainfall generally occurs over the western parts of Indonesia on phases 2 to 4, central parts of Indonesia on phase 4, and eastern parts of Indonesia on phases 4 to 5. Conversely, suppressed rainfall generally occurs over the western parts of Indonesia on phases 5 to 8, central parts of Indonesia on phases 6 to 8, and eastern parts of Indonesia on phases 1 to 2 and 6 to 8. In addition, the MJO influence during the JJA and SON seasons are slightly less, in terms of intensity, than during the DJF and MAM seasons, which is likely due to the northward shift of ITCZ and, hence, the intraseasonal oscillation convective envelope during boreal summer. Generally, enhanced rainfall occurs over the western and northern parts of Indonesia on phases 2 to 3, and suppressed rainfall on phases 6 to 7. The results indicate that convectively active MJO may increase the possibility of daily extreme rainfall in particular regions in Indonesia at different seasons.


2005 ◽  
Vol 18 (2) ◽  
pp. 287-301 ◽  
Author(s):  
C-P. Chang ◽  
Zhuo Wang ◽  
John McBride ◽  
Ching-Hwang Liu

Abstract In general, the Bay of Bengal, Indochina Peninsula, and Philippines are in the Asian summer monsoon regime while the Maritime Continent experiences a wet monsoon during boreal winter and a dry season during boreal summer. However, the complex distribution of land, sea, and terrain results in significant local variations of the annual cycle. This work uses historical station rainfall data to classify the annual cycles of rainfall over land areas, the TRMM rainfall measurements to identify the monsoon regimes of the four seasons in all of Southeast Asia, and the QuikSCAT winds to study the causes of the variations. The annual cycle is dominated largely by interactions between the complex terrain and a simple annual reversal of the surface monsoonal winds throughout all monsoon regions from the Indian Ocean to the South China Sea and the equatorial western Pacific. The semiannual cycle is comparable in magnitude to the annual cycle over parts of the equatorial landmasses, but only a very small region reflects the twice-yearly crossing of the sun. Most of the semiannual cycle appears to be due to the influence of both the summer and the winter monsoon in the western part of the Maritime Continent where the annual cycle maximum occurs in fall. Analysis of the TRMM data reveals a structure whereby the boreal summer and winter monsoon rainfall regimes intertwine across the equator and both are strongly affected by the wind–terrain interaction. In particular, the boreal winter regime extends far northward along the eastern flanks of the major island groups and landmasses. A hypothesis is presented to explain the asymmetric seasonal march in which the maximum convection follows a gradual southeastward progression path from the Asian summer monsoon to the Asian winter monsoon but experiences a sudden transition in the reverse. The hypothesis is based on the redistribution of mass between land and ocean areas during spring and fall that results from different land–ocean thermal memories. This mass redistribution between the two transition seasons produces sea level patterns leading to asymmetric wind–terrain interactions throughout the region, and a low-level divergence asymmetry in the region that promotes the southward march of maximum convection during boreal fall but opposes the northward march during boreal spring.


2019 ◽  
Vol 76 (11) ◽  
pp. 3633-3654 ◽  
Author(s):  
Michael B. Natoli ◽  
Eric D. Maloney

Abstract Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2020 ◽  
Vol 142 (1-2) ◽  
pp. 393-406
Author(s):  
Zhongkai Bo ◽  
Xiangwen Liu ◽  
Weizong Gu ◽  
Anning Huang ◽  
Yongjie Fang ◽  
...  

Abstract In this paper, we evaluate the capability of the Beijing Climate Center Climate System Model (BCC-CSM) in simulating and forecasting the boreal summer intraseasonal oscillation (BSISO), using its simulation and sub-seasonal to seasonal (S2S) hindcast results. Results show that the model can generally simulate the spatial structure of the BSISO, but give relatively weaker strength, shorter period, and faster transition of BSISO phases when compared with the observations. This partially limits the model’s capability in forecasting the BSISO, with a useful skill of only 9 days. Two sets of hindcast experiments with improved atmospheric and atmosphere/ocean initial conditions (referred to as EXP1 and EXP2, respectively) are conducted to improve the BSISO forecast. The BSISO forecast skill is increased by 2 days with the optimization of atmospheric initial conditions only (EXP1), and is further increased by 1 day with the optimization of both atmospheric and oceanic initial conditions (EXP2). These changes lead to a final skill of 12 days, which is comparable to the skills of most models participated in the S2S Prediction Project. In EXP1 and EXP2, the BSISO forecast skills are improved for most initial phases, especially phases 1 and 2, denoting a better description for BSISO propagation from the tropical Indian Ocean to the western North Pacific. However, the skill is considerably low and insensitive to initial conditions for initial phase 6 and target phase 3, corresponding to the BSISO convection’s active-to-break transition over the western North Pacific and BSISO convection’s break-to-active transition over the tropical Indian Ocean and Maritime Continent. This prediction barrier also exists in many forecast models of the S2S Prediction Project. Our hindcast experiments with different initial conditions indicate that the remarkable model errors over the Maritime Continent and subtropical western North Pacific may largely account for the prediction barrier.


2019 ◽  
Vol 19 (7) ◽  
pp. 4235-4256 ◽  
Author(s):  
Christoph G. Hoffmann ◽  
Christian von Savigny

Abstract. The Madden–Julian oscillation (MJO) is a major source of intraseasonal variability in the troposphere. Recently, studies have indicated that also the solar 27-day variability could cause variability in the troposphere. Furthermore, it has been indicated that both sources could be linked, and particularly that the occurrence of strong MJO events could be modulated by the solar 27-day cycle. In this paper, we analyze whether the temporal evolution of the MJO phases could also be linked to the solar 27-day cycle. We basically count the occurrences of particular MJO phases as a function of time lag after the solar 27-day extrema in about 38 years of MJO data. Furthermore, we develop a quantification approach to measure the strength of such a possible relationship and use this to compare the behavior for different atmospheric conditions and different datasets, among others. The significance of the results is estimated based on different variants of the Monte Carlo approach, which are also compared. We find indications for a synchronization between the MJO phase evolution and the solar 27-day cycle, which are most notable under certain conditions: MJO events with a strength greater than 0.5, during the easterly phase of the quasi-biennial oscillation, and during boreal winter. The MJO appears to cycle through its eight phases within two solar 27-day cycles. The phase relation between the MJO and the solar variation appears to be such that the MJO predominantly transitions from phase 8 to 1 or from phase 4 and 5 during the solar 27-day minimum. These results strongly depend on the MJO index used such that the synchronization is most clearly seen when using univariate indices like the OLR-based MJO index (OMI) in the analysis but can hardly be seen with multivariate indices like the real-time multivariate MJO index (RMM). One possible explanation could be that the synchronization pattern is encoded particularly in the underlying outgoing longwave radiation (OLR) data. A weaker dependence of the results on the underlying solar proxy is also observed but not further investigated. Although we think that these initial indications are already worth noting, we do not claim to unambiguously prove this relationship in the present study, neither in a statistical nor in a causal sense. Instead, we challenge these initial findings ourselves in detail by varying underlying datasets and methods and critically discuss resulting open questions to lay a solid foundation for further research.


2013 ◽  
Vol 141 (12) ◽  
pp. 4197-4210 ◽  
Author(s):  
Michael J. Ventrice ◽  
Matthew C. Wheeler ◽  
Harry H. Hendon ◽  
Carl J. Schreck ◽  
Chris D. Thorncroft ◽  
...  

Abstract A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.


Sign in / Sign up

Export Citation Format

Share Document