Characteristic intraseasonal oscillation of rainfall and its effect on interannual variability over Bangladesh during boreal summer

2010 ◽  
Vol 31 (8) ◽  
pp. 1192-1204 ◽  
Author(s):  
Hatsuki Fujinami ◽  
Daisuke Hatsuzuka ◽  
Tetsuzo Yasunari ◽  
Taiichi Hayashi ◽  
Toru Terao ◽  
...  
2016 ◽  
Vol 29 (19) ◽  
pp. 7009-7025 ◽  
Author(s):  
Li Deng ◽  
Tim Li

Abstract The interannual variability of the boreal summer intraseasonal oscillation (BSISO) is investigated using observed outgoing longwave radiation (OLR) and ERA-Interim data for the period of 1980–2012. It is found that the interannual variability of BSISO intensity is much stronger in the tropical western Pacific (TWP) than the tropical Indian Ocean (TIO). A BSISO intensity index is defined based on a multivariate EOF analysis in TWP. It is found that strong BSISO years are associated with El Niño–like sea surface temperature anomalies in the tropical Pacific, anomalous easterly shear, and enhanced background moisture condition in the region. Using a 2.5-layer atmospheric model with a specified idealized background mean state, the authors further examine the relative roles of background moisture and vertical shear fields in modulating the BSISO intensity. Sensitivity numerical experiments indicate that the background moisture change is most important in regulating the BSISO intensity, whereas the background vertical shear change also plays a role.


2011 ◽  
Vol 24 (3) ◽  
pp. 927-941 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li ◽  
Chih-Hua Tsou

Abstract The role of scale interactions in the maintenance of eddy kinetic energy (EKE) during the extreme phases of the intraseasonal oscillation (ISO) is examined through the construction of a new eddy energetics diagnostic tool that separates the effects of ISO and a low-frequency background state (LFBS; with periods longer than 90 days). The LFBS always contributes positively toward the EKE in the boreal summer, regardless of the ISO phases. The synoptic eddies extract energy from the ISO during the ISO active phase. This positive barotropic energy conversion occurs when the synoptic eddies interact with low-level cyclonic and convergent–confluent ISO flows. This contrasts with the ISO suppressed phase during which the synoptic eddies lose kinetic energy to the ISO flow. The anticyclonic and divergent–diffluent ISO flows during the suppressed phase are responsible for the negative barotropic energy conversion. A positive (negative) EKE tendency occurs during the ISO suppressed-to-active (active-to-suppressed) transitional phase. The cause of this asymmetric EKE tendency is attributed to the spatial phase relation among the ISO vorticity, eddy structure, and EKE. The southwest–northeast-tilted synoptic disturbances interacting with cyclonic (anticyclonic) vorticity of ISO lead to a positive (negative) EKE tendency in the northwest region of the maximum EKE center. The genesis number and location and intensification rate of tropical cyclones in the western North Pacific are closely related to the barotropic energy conversion. The enhanced barotropic energy conversion favors the generation and development of synoptic seed disturbances, some of which eventually grow into tropical cyclones.


2011 ◽  
Vol 24 (10) ◽  
pp. 2451-2468 ◽  
Author(s):  
Nicholas P. Klingaman ◽  
Steven J. Woolnough ◽  
Hilary Weller ◽  
Julia M. Slingo

Abstract A newly assembled atmosphere–ocean coupled model, called HadKPP, is described and then used to determine the effects of subdaily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intraseasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K-Profile Parameterization ocean boundary layer model. Four 30-member ensembles were performed that vary in ocean vertical resolution between 1 and 10 m and in coupling frequency between 3 and 24 h. The 10-m, 24-h ensemble exhibited roughly 60% of the observed 30–50-day variability in sea surface temperatures and rainfall and very weak northward propagation. Enhancing only the vertical resolution or only the coupling frequency produced modest improvements in variability and just a standing intraseasonal oscillation. Only the 1-m, 3-h configuration generated organized, northward-propagating convection similar to observations. Subdaily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intraseasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical subseasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intraseasonal oscillation resembling observations.


2021 ◽  
pp. 1-39
Author(s):  
Lei Zhang ◽  
Weiqing Han ◽  
Zeng-Zhen Hu

AbstractAn unprecedented extreme positive Indian Ocean Dipole event (pIOD) occurred in 2019, which has caused widespread disastrous impacts on countries bordering the Indian Ocean, including the East African floods and vast bushfires in Australia. Here we investigate the causes for the 2019 pIOD by analyzing multiple observational datasets and performing numerical model experiments. We find that the 2019 pIOD is triggered in May by easterly wind bursts over the tropical Indian Ocean associated with the dry phase of the boreal summer intraseasonal oscillation, and sustained by the local atmosphere-ocean interaction thereafter. During September-November, warm sea surface temperature anomalies (SSTA) in the central-western tropical Pacific further enhance the Indian Ocean’s easterly winds, bringing the pIOD to an extreme magnitude. The central-western tropical Pacific warm SSTA is strengthened by two consecutive Madden Julian Oscillation (MJO) events that originate from the tropical Indian Ocean. Our results highlight the important roles of cross-basin and cross-timescale interactions in generating extreme IOD events. The lack of accurate representation of these interactions may be the root for a short lead time in predicting this extreme pIOD with a state-of-the-art climate forecast model.


2017 ◽  
Vol 50 (5-6) ◽  
pp. 1485-1494 ◽  
Author(s):  
Jinwon Kim ◽  
Duane E. Waliser ◽  
Gregory V. Cesana ◽  
Xianan Jiang ◽  
Tristan L’Ecuyer ◽  
...  

2012 ◽  
Vol 140 (6) ◽  
pp. 1748-1760 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Eun-Ji Song

Abstract Potential vorticity (PV) thinking conceptually connects the upper-level (upper troposphere in the extratropics and middle troposphere for the tropics) dynamical process to the lower-level process. Here, the initiation mechanism of the boreal summer intraseasonal oscillation (BSISO) in the tropics is investigated using PV thinking. The authors demonstrate that the midtropospheric PV anomaly produces a dynamical environment favorable for the BSISO initiation. Under seasonal easterly vertical wind shear, the PV anomaly enhances low-level convergence and upward motion at its western edge. Tropical PV forcing in the middle troposphere produces balanced mass and circulation fields that spread horizontally and vertically so that its effect can reach even the lowest troposphere. The downward influence of the midtropospheric PV forcing is one of the key aspects of the PV thinking. Direct piecewise PV inversions confirm that the anomalous lower-level zonal wind and its convergence necessary for the initiation of BSISO convection do not arise solely from the response to the lower-level PV forcing but from the summed contribution by PV forcing at all levels. About 50% of the low-level circulation variations result from PV forcing from 700 to 450 hPa, with the largest contribution from the 600–650-hPa PV anomalies for the convection initiation region over the western Indian Ocean. The current study is compared with and incorporated into the thermodynamic recharge process and the frictional moisture flux convergence mechanism for the BSISO initiation. This study is the first qualitative application of the PV thinking approach that reveals the BSISO dynamics.


Sign in / Sign up

Export Citation Format

Share Document