scholarly journals Effect of Unbalanced Force Loading on the Safety of Transmission Tower

2021 ◽  
Vol 898 (1) ◽  
pp. 012011
Author(s):  
Hongji Zhang

Abstract High-voltage transmission towers, as support points for overhead transmission lines, are often under the condition of unbalanced force loading. Transmission towers can collapse because of the unbalanced forces, leading to the power outage. Therefore, it is of practical importance to set a research on the effect of unbalanced force loading on the safety of transmission tower. In this paper, based on the prototype of 500kV transmission tower, the integral beam element model is established by ABAQUS finite element software for simulation analysis. Static load mode and unbalanced force loading were considered in this simulation model. Through the comparative analysis of the maximum displacement and stress in transmission tower, the safety of the 500kV transmission tower was analyzed. The variations of maximum displacement and Mises stress with the increasing unbalanced force were obtained. The limit of unbalanced force the 500kV transmission tower can sustain was given by comparing the simulated results.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2014 ◽  
Vol 494-495 ◽  
pp. 1815-1819
Author(s):  
Li Qiang An ◽  
Yu Chu Liu ◽  
Bing Zhang

In this paper, the dynamic characteristics of a 1000kV UHV steel tubular tower with double circuit transmission lines on the same tower are analyzed under seismic loading with 8 degrees fortification intensity. Firstly, the finite element model of the tower and simulation of the earthquake are built in ANSYS finite element software. The dynamic characteristics of steel tube tower under Seismic Loads, such as the time-domain curves of displacement, velocity and force of UHV steel tower under Seismic Loads are obtained. The impact of 1000kV UHV transmission tower under nonlinear vibration of simplified conductor model is studied. The results can help to understand the damage forms of UHV steel tower under earthquake, to improve the capabilities to resist earthquake loads and severe damage of environmental loads under various field conditions for UHV steel tower.


2014 ◽  
Vol 680 ◽  
pp. 395-398
Author(s):  
Chun Cheng Liu ◽  
Zhao Wen He ◽  
Yu Jiang Pan ◽  
Wen Qiang Li ◽  
Shang Yu Hou

In order to study the residual fatigue life of 500 kv transmission tower under load conditions, a multi-scale finite element model of transmission tower is established. By simulating time course of wind load, using Miner fatigue cumulative damage theory and linear S-N curve, the calculation method of transmission towers fatigue life is established. The research shows that the multi-scale model can better simulate the stress and strain state of the transmission tower, and can predict the remaining service life of the transmission tower .The research has important significance and application value for the safe operation of the transmission lines.


2019 ◽  
Vol 9 (16) ◽  
pp. 3343 ◽  
Author(s):  
Jiajia Shi ◽  
Liu Chu ◽  
Eduardo Souza de Cursi

The utilization of modal frequency sensors is a feasible and effective way to monitor the settlement problem of the transmission tower foundation. However, the uncertainties and interference in the real operation environment of transmission towers highly affect the accuracy and identification of modal frequency sensors. In order to reduce the interference of modal frequency sensors for transmission towers, a Kriging surrogate model is proposed in this study. The finite element model of typical transmission towers is created and validated to provide the effective original database for the Kriging surrogate model. The prediction accuracy and convergences of the Kriging surrogate model are measured and confirmed. Besides the merits in computational cost and high-efficiency, the Kriging surrogate model is proven to have a satisfied and robust interference reduction capacity. Therefore, the Kriging surrogate model is feasible and competitive for interference filtration in the settlement surveillance sensors of steel transmission towers.


Author(s):  
Xing Fu ◽  
Wen-Long Du ◽  
Hong-Nan Li ◽  
Wen-Ping Xie ◽  
Kai Xiao ◽  
...  

The gust response factors (GRFs) of transmission towers in current standards are reviewed for synoptic winds. The collapse of most transmission towers has occurred under the high-intensity wind (HIW) caused by events such as typhoons, hurricanes, and downbursts. Thus, this paper studies the GRF of a transmission tower under the typhoon. First, the definition of GRF and its extended form for the transmission towers are developed. Then the wind speed simulation of a typhoon event is introduced. Based on the structural health monitoring (SHM) system installed on tower #32, the measured GRFs under the super typhoon Mangkhut are calculated. Then the finite element model (FEM) of the transmission tower-line system is established to simulate the dynamic response to further calculate the GRFs, which agrees well with the field measurements. Both the field measurement and simulation results show that the GRFs under the typhoon are larger than those under the synoptic wind and that the recommended GRFs in the Chinese standard underestimate the peak responses. Finally, a parametric analysis is performed, which demonstrates that the turbulence intensity, wind speed, and power-law exponent all have great effects on the GRFs of transmission towers. In the HIW-prone areas, it is recommended that the characteristics of the HIW can be considered in improving the GRF values to guarantee the structural safety of transmission towers.


2012 ◽  
Vol 170-173 ◽  
pp. 3145-3152
Author(s):  
Ji Liang Liu ◽  
Ming Jin Chu ◽  
Shu Dong Xu ◽  
Ying Ying Yin

The author performs simulation analysis on construction process of roofing prestressed concrete beam of comprehensive service center in Beijing Institute of Civil Engineering and Architecture by finite element software Midas/Gen, so as to determine the monitoring programme according to the analysis results. The monitoring results indicate that the structure is safe; the theoretical value of simulation analysis is well matched with actual monitoring value, which means that the finite element model of construction process of roofing prestressed concrete beam is correct, the simulation method is feasible and the construction process is reasonable. It has important reference value for construction and monitoring of subsequent similar projects.


2013 ◽  
Vol 459 ◽  
pp. 625-630
Author(s):  
Chun Cheng Liu ◽  
Qiang Sheng Xu

Model selection is carried out structural analysis Transmission Tower one of the priorities. Through the establishment of traditional beams - truss hybrid model, improved beam - beam hybrid model and frame model, a modeling analysis of angle steel tower cathead. First on the transmission tower modal analysis, and then the common wind conditions and ice conditions of the maximum stress and maximum displacement results are discussed, and then local analysis. Identify similarities and differences between the three models, discusses the advantages and disadvantages of the model to meet the design requirements of the situation and the results can be obtained more reasonable feasibility.


2012 ◽  
Vol 151 ◽  
pp. 484-489 ◽  
Author(s):  
Jie Fang Xing ◽  
Jie Zhang ◽  
Lu Jun He

Introduce some basic knowledge, methods and theory of using the finite element software ANSYS to carry out contact analysis, and then establish the contact simulation analysis finite element model for CTP imaging drum and plate by using the software ANSYS. A numerical simulation analysis on the imaging drum and the plate indicates that the analysis results are consistent with the experimental results, so as to lay the foundation for the reliability and stability of dynamic design and optimization design of CTP imaging drum.


2013 ◽  
Vol 459 ◽  
pp. 589-594
Author(s):  
Yu Zhuo Jia ◽  
Hai Hong Xi ◽  
Liang Zhang

In Chinese transmission towers, all the steels are equilateral angle, most of the diagonal and secondary members are in one-sided bolt connection working condition, so the force is eccentric. When the length within a certain range, relative to the equilateral angle, non-equilateral angle steel under this working condition to be able to withstand a larger load, and the ability to cross-sectional area smaller, reducing the weight of the whole base tower. In order to solve the above problems, through research and analysis of large-scale finite element software ANSYS diagonal and secondary members for transmission tower angle steel model length which can be equilateral angle replaced non-equilateral angle steel. Eventually found that when the length is small long side is connected to non-equilateral angle steel are available, and when the length is bigger short side is connected to non-equilateral angle steel are available.


2013 ◽  
Vol 848 ◽  
pp. 100-103
Author(s):  
Xin Yan Wu ◽  
An Ping Lou

In this paper, finite element model (FEM) of a reinforced concrete structure cantilevered slab was established in non-linear finite element software ABAQUS. Influence of cantilever length and tensile reinforcement on the structural displacement and vibration frequency was calculated. The results show that the vibration frequency of the first order and maximum displacement will various with the diameter of the reinforced cantilever slab and the length of the cantilevered slab. This paper will offer the references to the analysis and design of the cantilever slab.


Sign in / Sign up

Export Citation Format

Share Document