scholarly journals Quantifying the perceptions of the 2018 Palu earthquake survivors on the use of light bricks as a wall material of simple house

2021 ◽  
Vol 926 (1) ◽  
pp. 012007
Author(s):  
I G Tunas ◽  
Asrafil ◽  
N M S Parwati

Abstract The construction of new housing for rehabilitation and reconstruction purposes must minimize the risks that may occur due to earthquakes, one of which is by using light materials (light bricks) as wall construction. However, the use of light bricks is often misunderstood by earthquake survivors because they are considered to have insufficient strength as a construction material. This paper intends to introduce light bricks to exposed communities and further quantify their perceptions of the application of this material to the rehabilitation and reconstruction of their buildings. The introduction of the material is done through socialization by displaying the results of laboratory tests of compressive strength and showing evidence of the application of this material in other places. The perceptions of the impacted community were analyzed from questionnaire results to 50 respondents with ten questions as the measurement reference. The results of the analysis show that almost all respondents show fairly good acceptance of light brick applications with a score of 3.70 of 5. Based on perception, the use of light bricks as a wall material has the opportunity to be applied for residential rehabilitation and reconstruction as a result of the 2018 Palu earthquake.

2018 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
NURUL NAZIERAH MOHD YUSRI ◽  
KARTINI KAMARUDDIN ◽  
HAMIDAH MOHD SAMAN ◽  
NURAINI TUTUR

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


Author(s):  
O.S. Olagunju ◽  
A.A. Raheem

Two-cell hollow sandcrete blocks constitute the dominant wall construction material for modern shelter in many African countries, especially Nigeria. The hollow cavities in the block have adverse effect on its mechanical characteristics. This study investigated the effects of hollow sizes on the properties of sandcrete blocks. Sandcrete blocks of size 225 × 225 × 450 mm with varying hollow sizes of 175 × 187.5, 173 ×190 and 180 × 210 mm and web thickness 25, 35 and 15 mm respectively; were produced using cement: sand ratio of 1:12. The blocks were tested for compressive strength, density and water absorption. The results indicated that compressive strength at 28 days for blocks with hollow sizes 175 × 187.5, 173 ×190 and 180 × 210 mm are 5.22, 3.64 and 0.41 Nmm-2 respectively. The corresponding densities are 2307.56, 2589.15 and 1715.23 kg/m³ while the rate of water absorption are 22.2, 18.8 and 24.5%, respectively. It was concluded that the larger the size of the hollow in sandcrete blocks the lower their mechanical properties.


2020 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste. 


2018 ◽  
Vol 15 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 556
Author(s):  
Muhammad Faisal Javed ◽  
Afaq Ahmad Durrani ◽  
Sardar Kashif Ur Rehman ◽  
Fahid Aslam ◽  
Hisham Alabduljabbar ◽  
...  

Numerous research studies have been conducted to improve the weak properties of recycled aggregate as a construction material over the last few decades. In two-stage concrete (TSC), coarse aggregates are placed in formwork, and then grout is injected with high pressure to fill up the voids between the coarse aggregates. In this experimental research, TSC was made with 100% recycled coarse aggregate (RCA). Ten percent and twenty percent bagasse ash was used as a fractional substitution of cement along with the RCA. Conventional concrete with 100% natural coarse aggregate (NCA) and 100% RCA was made to determine compressive strength only. Compressive strength reduction in the TSC was 14.36% when 100% RCA was used. Tensile strength in the TSC decreased when 100% RCA was used. The increase in compressive strength was 8.47% when 20% bagasse ash was used compared to the TSC mix that had 100% RCA. The compressive strength of the TSC at 250 °C was also determined to find the reduction in strength at high temperature. Moreover, the compressive and tensile strength of the TSC that had RCA was improved by the addition of bagasse ash.


2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


2013 ◽  
Vol 795 ◽  
pp. 684-691 ◽  
Author(s):  
Wail N. Al-Rifaie ◽  
Omar Mohanad Mahdi ◽  
Waleed Khalil Ahmed

The present research examined the compressive and flexural strength of nanocement mortar by using micro cement, micro sand, nanosilica and nanoclay in developing a nanocement mortar which can lead to improvements in ferrocement construction. The measured results demonstrate the increase in compressive and flexural strength of mortars at early stages of hardening. In addition, the influence of heating on compressive strength of cement mortar. General expressions to predict the compressive strength, modulus of rupture for the developed nanocement mortar in the present work are proposed.


2019 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Diana S. Purwanto ◽  
Dalima A.W. Astrawinata

Abstract: The complexity of the pathogenesis and pathophysiology of sepsis involves almost all types of cells, tissues, and organ systems. Therefore, there are numbers of laboratory tests that can be used as biomarkers of sepsis and septic shock. Some widely used biomarkers are divided into groups of bacterial products, acute phase proteins, tissue hypoperfusion, coagulation mediators, cell surfaces, and cytokines.Keywords: sepsis, septic shock, biomarkersAbstrak: Kompleksnya patogenesis dan patofisiologi sepsis melibatkan hampir semua jenis sel, jaringan, dan sistem organ. Oleh karena itu, terdapat banyak parameter laboratorik yang dapat dijadikan biomarker sepsis dan syok septik. Berbagai biomarker yang banyak digunakan terbagi dalam kelompokan produk bakteri, protein fase akut, hipoperfusi jaringan, mediator koagulasi, permukaan sel, dan sitokin.Kata kunci: sepsis, syok septik, biomarker


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


Author(s):  
S. Christopher Gnanaraj ◽  
Ramesh Babu Chokkalingam ◽  
G. Lizia Thankam ◽  
S.K.M. Pothinathan

AbstractFor the past few decades innovation in construction material has grown a lot. This leads to special concrete such as self-compacting concrete, geopolymer concrete, self-healing concrete, etc. To prepare a special concrete apart from regular concreting material some sort of special materials was also needed, like mineral and chemical admixtures. Hence it is necessary to study the effect of these admixtures in cement paste and mortar before studying the same in concrete. Hence an attempt is made to study the effect of mineral and chemical admixtures in the fresh and hardened properties of cement paste and mortar. For this study ultrafine natural steatite powder is taken as mineral admixture and polycarboxylic based superplasticizer and glenium stream 2 were taken as chemical admixtures. Ultrafine natural steatite powder was used as additive to cement in various percentages like 0%, 5%, 10%, 15%, 20% and 25%. Superplasticizer and viscosity modifying admixture were taken as 1.5% and 0.5%, respectively. Then various combinations were worked out. To study the fresh property of cement paste consistency, initial setting time and miniature slump cone test were done based on the results yield stress of cement paste also calculated empirically. To study the hardened property compression test on cement mortar was done. Based on the test results it is clear that the addition of ultrafine natural steatite powder increases the water demand hence reduces the workability. On the other hand, it increases the compressive strength up to a certain limit. Adding superplasticizer increases the workability and reduces the water demand and viscosity modifying admixture reduces the bleeding and segregation effects hence increases the compressive strength.


Sign in / Sign up

Export Citation Format

Share Document