scholarly journals Solar Tracker and Wind Guide Designs to Improve the Energy Conversion in a Hybrid Energy Harvester System

2021 ◽  
Vol 927 (1) ◽  
pp. 012011
Author(s):  
Estiyanti Ekawati ◽  
Gusnul Andria Gita Putra ◽  
Muhammad Fahrur Reza ◽  
Eko Mursito Budi

Abstract This study focused on improving the energy conversion of hybrid solar panels and a wind turbine system. The improvement was produced by enhancing the system with a solar tracker and a wind guide. A microcontroller operated the single-axis solar tracker based on a solar elevation database at -6.91N, 107.61E. The wind guide was an Omni Directional Guide Vane (ODGV), designed to support the drag-type Savonius turbine. The ODGV’s inside and outside diameters were 540 mm and 1000 mm, respectively. The wind guide had a 30° polar angle between fins and produced a torque of 0.128 Nm at a wind speed of 4 m/s. The solar tracker increased the system performance by 47% and the wind guide by 166%.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Lingguo Kong ◽  
Guowei Cai ◽  
Sidney Xue ◽  
Shaohua Li

An AC-linked large scale wind/photovoltaic (PV)/energy storage (ES) hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS) and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC), is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM) is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT) capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC) 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.


2018 ◽  
Vol 85 (13) ◽  
pp. 1203-1217 ◽  
Author(s):  
Ketsuda Kongsawatvoragul ◽  
Saran Kalasina ◽  
Montakan Suksomboon ◽  
Nutthaphon Phattharasupakun ◽  
Juthaporn Wutthiprom ◽  
...  

2017 ◽  
Author(s):  
Indra Riyanto

This paper will discuss about the design of a portable photo voltaic electric generator capable of tracking sunlight in all directions. Such power generator is designed for disaster affected area with power outage, such as during major floods like Jakarta in 2012, or strong earthquake such as Yogyakarta in 2006 and Japan in 2011 (Tohoku) and 2016 (Kumamoto). Such occurence usually results in disruptions of public service, especially power grids. The system consists of a 10 Wp PV solar panels capable in two axes movement, which is 120° horizontal and 360° azimuth movement with ATMega8535 micro controller as the main controller. Two-axis movement is based on two types of sensors, 360° directional movement is based on the HMC5883 compass sensor. This compass sensor panel also be configured to always directs towards the sun so that if the direction of the base plate was changed, it will automatically direct the panel to the direction of the sun. While 120° vertical movement based on three pieces of LDR (Light Dependent Resistor) as sun sensors. The purpose of this system is to maximize the amount of light received by the panel so the panel power output is also maximized so it can generate emergency electrical supply for lighting and other basic needs.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3308-3311

This paper presents the outline and execution of simple, easy and cheaper automatic dual axis solar tracking system using Arduino UNO as the control element and light detecting sensors (LDRS) as the sensing element. This project involves advanced level of technology to capture maximum amount of energy using sun’s radiations. The main purpose is to increase the efficiency of tracking system which can rotate in all four directions continuously according to intensity of radiations and for energy conversion. In this, the voltage from panel is calculated from time to time in an interval of 1hr and this voltage is used to sense the weather conditions and display the climatic temperatures


2020 ◽  
Vol 4 (3) ◽  
pp. 179-190
Author(s):  
Budi Setiadi

ABSTRAKSalah satu faktor yang mempengaruhi daya keluaran listrik dari panel surya adalah posisi dan tingkat penyerapan sinar UV (Ultraviolet) dari matahari. Penggunaan aktuator motor servo untuk solar tracker membebani listrik yang dihasilkan dari pembangkit internal panel surya. Pada penelitian ini dirancang solar tracker menggunakan silinder pneumatik sebagai pengganti aktuator motor servo. Sedangkan, sensor UV digunakan untuk memantau sudut pergerakan matahari. Nilai error dan Δerror dari hasil pengolahan data sensor UV menjadi masukan bagi sistem pengambilan keputusan berbasis kendali fuzzy. Keluaran sistem pengambilan keputusan ini mengatur pergerakan posisi silinder pneumatik naik, turun, atau stop. Pengujian perangkat bekerja dengan baik, menghasilkan respon dinamik overshoot 5,3 % dan error steady state 1,6 %.Kata kunci: ultraviolet, pneumatik, fuzzy, overshoot, errorABSTRACTOne of the factors that affect the electrical output power of solar panels is the position and the absorption level of UV (Ultraviolet) rays from the sun. The use of a servo motor actuator for solar trackers burdens the generated electricity from the solar panels internal generator. In this study, a solar tracker was designed using a pneumatic cylinder as a replacement for the servo motor actuator. While a UV sensor was used to monitor the angle of the sun’s movement. The error and Δerror values from UV sensor data processing results become an input for decision-making systems based on fuzzy control. The output of this decision-making system regulates the movement of the position of the pneumatic cylinder up, down, or stopping. The test device worked properly, resulting in a dynamic response overshoot of 5.3% and a steady-state error of 1.6%.Keywords: ultraviolet, pneumatic, fuzzy, overshoot, error


Sign in / Sign up

Export Citation Format

Share Document