scholarly journals Study on the effect of various burnable poisons on pebble bed reactor with OTTO fuelling schemes using Serpent 2 Monte Carlo code

2021 ◽  
Vol 927 (1) ◽  
pp. 012018
Author(s):  
Nicholas Sidharta ◽  
Almanzo Arjuna

Abstract Pebble bed reactor with a once-through-then-out fuelling scheme has the advantage of simplifying the refueling system. However, the core upper-level power density is relatively higher than the bottom, producing an asymmetric core axial power distribution. Several burnable poison (BP) configurations are used to flatten the peak power density and improve power distribution while suppressing the excess core reactivity at the beginning of the burnup cycle. This study uses HTR-PM, China’s pebble bed reactor core, to simulate several burnable poison (BP) configurations. Serpent 2 coupled with Octave and a discrete element method simulation is used to model and simulate the pebble bed reactor core. It is found that erbium needs a large volumetric fraction in either QUADRISO or distributed BP to perform well. On the other hand, gadolinium and boron need a smaller volumetric fraction but perform worse in radial power distribution criteria in the fuel sphere. This study aims to verify the effect of BP added fuel pebbles on an OTTO refueling scheme HTR-PM core axial power distribution and excess reactivity.

Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

This paper presents combined computational fluid dynamics (CFD) and discrete element method (DEM) simulations of fluid flow and relevant heat transfer in the pebble bed reactor core. In the pebble bed reactor core, the coolant passes highly complicated flow channels, which are formed by thousands of pebbles in a random way. The random packing structure of pebbles is crucial to CFD simulations results. The realistic packing structure in an entire pebble bed reactor (PBR) is generated by discrete element method (DEM). While in CFD calculations, selection of the turbulence models have great importance in accuracy and capturing the details of the flow features, in our numerical simulations both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) models are employed to investigate the effects of different turbulence models on gas flow field and relevant heat transfer. The calculations indicate the complex flow structure within the voids between the pebbles.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Wonkyeong Kim ◽  
Jinsu Park ◽  
Tomasz Kozlowski ◽  
Hyun Chul Lee ◽  
Deokjung Lee

A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.


Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
A. Rais ◽  
D. Siefman ◽  
G. Girardin ◽  
M. Hursin ◽  
A. Pautz

In order to analyze the steady state and transient behavior of the CROCUS reactor, several methods and models need to be developed in the areas of reactor physics, thermal-hydraulics, and multiphysics coupling. The long-term objectives of this project are to work towards the development of a modern method for the safety analysis of research reactors and to update the Final Safety Analysis Report of the CROCUS reactor. A first part of the paper deals with generation of a core simulator nuclear data library for the CROCUS reactor using the Serpent 2 Monte Carlo code and also with reactor core modeling using the PARCS code. PARCS eigenvalue, radial power distribution, and control rod reactivity worth results were benchmarked against Serpent 2 full-core model results. Using the Serpent 2 model as reference, PARCS eigenvalue predictions were within 240 pcm, radial power was within 3% in the central region of the core, and control rod reactivity worth was within 2%. A second part reviews the current methodology used for the safety analysis of the CROCUS reactor and presents the envisioned approach for the multiphysics modeling of the reactor.


Nukleonika ◽  
2019 ◽  
Vol 64 (4) ◽  
pp. 131-138
Author(s):  
◽  
Topan Setiadipura ◽  
Jim C. Kuijper ◽  

Abstract As a crucial core physics parameter, the control rod reactivity has to be predicted for the control and safety of the reactor. This paper studies the control rod reactivity calculation of the pebble-bed reactor with three scenarios of UO2, (Th,U)O2, and PuO2 fuel type without any modifications in the configuration of the reactor core. The reactor geometry of HTR-10 was selected for the reactor model. The entire calculation of control rod reactivity was done using the MCNP6 code with ENDF/B-VII library. The calculation results show that the total reactivity worth of control rods in UO2-, (U,Th)O2-, and PuO2-fueled cores is 15.87, 15.25, and 14.33%Δk/k, respectively. These results prove that the effectiveness of total control rod in thorium and uranium cores is almost similar to but higher than that in plutonium cores. The highest reactivity worth of individual control rod in uranium, thorium and plutonium cores is 1.64, 1.44, and 1.53%Δk/k corresponding to CR8, CR1, and CR5, respectively. The other results demonstrate that the reactor can be safely shutdown with the control rods combination of CR3+CR5+CR8+CR10, CR2+CR3+CR7+CR8, and CR1+CR3+CR6+CR8 in UO2-, (U,Th)O2-, and PuO2-fueled cores, respectively. It can be concluded that, even though the calculation results are not so much different, however, the selection of control rods should be considered in the pebble-bed core design with different scenarios of fuel type.


2021 ◽  
Vol 247 ◽  
pp. 04024
Author(s):  
Yurii Bilodid ◽  
Jaakko Leppänen

One of challenges of the Monte Carlo full core simulations is to obtain acceptable statistical variance of local parameters throughout the whole reactor core at a reasonable computation cost. The statistical variance tends to be larger in low-power regions. To tackle this problem, the Uniform-Fission-Site method was implemented in Monte Carlo code MC21 and its effectiveness was demonstrated on NEA Monte Carlo performance benchmark. The very similar method is also implemented in Monte Carlo code Serpent under the name Uniform Fission Source (UFS) method. In this work the effect of UFS method implemented in Serpent is studied on the BEAVRS benchmark which is based on a real PWR core with relatively flat radial power distribution and also on 3x3 PWR mini-core simulated with thermo-hydraulic and thermo-mechanic feedbacks. It is shown that the application of the Uniform Fission Source method has no significant effect on radial power variance but equalizes axial distribution of variance of local power.


Sign in / Sign up

Export Citation Format

Share Document