scholarly journals Assessing effects of climate change on irrigation water demand in the Lombok River Basin, Indonesia

2021 ◽  
Vol 930 (1) ◽  
pp. 012061
Author(s):  
A W W Saputra ◽  
N A Zakaria ◽  
N W Chan

Abstract Irrigation water demand in the command area is affected by rainfall and climate conditions in the river basin. In climate change conditions, rainfall and temperature are predicted to increase and projected to impact irrigation water requirements significantly. Therefore, understanding the climate change effects on irrigation demand in the command area is significant to the river basin manager and planner for managing water resources effectively. This study aims to predict the impact of climate change and irrigation efficiency improvement on the irrigation water requirement in 2032-2040. This study used the CropWat model to estimate irrigation water requirements in 1995-2005 and 2032-2040. Irrigation water demand in the Dodokan watershed as a part of the Lombok river basin was computed using the historical rainfall and climate data from observation stations. Further, the observed data from 2006 to 2014 were projected into climate change in 2032-2040 as an input for the model to predict the demand in corresponding years. Result suggests that the change of annual irrigation water demand in the Dodokan watershed was expected to rise by 1.61% in 2032-2040 compared with 1995-2005, and irrigation efficiency improvement effort would decrease the demand -18.18% in the climate change period.

Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
Yogendra Mishra ◽  
Mukand Singh Babel ◽  
Tai Nakamura ◽  
Bhogendra Mishra

The diminishing spring discharge in the Middle Mountain Zone (MMZ) in Nepal is a matter of concern because it directly affects the livelihoods of low-income farmers in the region. Therefore, understanding the impacts of changes in climate and land-use patterns on water demand and availability is crucial. We investigated the impact of climate change on streamflow and environmental flow, and the demand for spring-fed river water for irrigation using the limited meteorological data available for the Babai River Basin, Nepal. SWAT and CROPWAT8.0 were used to respectively calculate present and future streamflow and irrigation water demand. Three general circulation models under two representative concentration pathways (RCPs 4.5 and 8.5) for the periods of 2020–2044, 2045–2069, and 2070–2099 were used to investigate the impact of climate change. Results indicate that the catchment is likely to experience an increase in rainfall and temperature in the future. The impact of the increment in rainfall and rise in temperature are replicated in the annual river flow that is anticipated to increase by 24–37%, to the historical data of 1991–2014. Despite this increase, projections show that the Babai River Basin will remain a water deficit basin from January to May in future decades.


2015 ◽  
Vol 7 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Ali Fares ◽  
Ripendra Awal ◽  
Samira Fares ◽  
Alton B. Johnson ◽  
Hector Valenzuela

The impact of potential future climate change scenarios on the irrigation water requirements (IRRs) of two major agricultural crops (coffee and seed corn) in Hawai'i was studied using the Irrigation Management System (IManSys) model. In addition to IRRs calculations, IManSys calculates runoff, deep percolation, canopy interception, and effective rainfall based on plant growth parameters, site specific soil hydrological properties, irrigation system efficiency, and long-term daily weather data. Irrigation water requirements of two crops were simulated using historical climate data and different levels of atmospheric CO2 (330, 550, 710 and 970 ppm), temperature (+1.1 and +6.4 °C) and precipitation (±5, ±10 and ±20%) chosen based on the Intergovernmental Panel on Climate Change (IPCC) AR4 projections under reference, B1, A1B1 and A1F1 emission scenarios. IRRs decreased as CO2 emission increased. The average percentage decrease in IRRs for seed corn is higher than that of coffee. However, runoff, rain canopy interception, and deep percolation below the root zone increased as precipitation increased. Canopy interception and drainage increased with increased CO2 emission. Evapotranspiration responded positively to air temperature rise, and as a result, IRRs increased as well. Further studies using crop models will predict crop yield responses to these different irrigation scenarios.


2007 ◽  
Vol 7 (3) ◽  
pp. 149-159 ◽  
Author(s):  
J. A. Rodríguez Díaz ◽  
E. K. Weatherhead ◽  
J. W. Knox ◽  
E. Camacho

2020 ◽  
Vol 117 (47) ◽  
pp. 29526-29534
Author(s):  
Lorenzo Rosa ◽  
Davide Danilo Chiarelli ◽  
Matteo Sangiorgio ◽  
Areidy Aracely Beltran-Peña ◽  
Maria Cristina Rulli ◽  
...  

Climate change is expected to affect crop production worldwide, particularly in rain-fed agricultural regions. It is still unknown how irrigation water needs will change in a warmer planet and where freshwater will be locally available to expand irrigation without depleting freshwater resources. Here, we identify the rain-fed cropping systems that hold the greatest potential for investment in irrigation expansion because water will likely be available to suffice irrigation water demand. Using projections of renewable water availability and irrigation water demand under warming scenarios, we identify target regions where irrigation expansion may sustain crop production under climate change. Our results also show that global rain-fed croplands hold significant potential for sustainable irrigation expansion and that different irrigation strategies have different irrigation expansion potentials. Under a 3 °C warming, we find that a soft-path irrigation expansion with small monthly water storage and deficit irrigation has the potential to expand irrigated land by 70 million hectares and feed 300 million more people globally. We also find that a hard-path irrigation expansion with large annual water storage can sustainably expand irrigation up to 350 million hectares, while producing food for 1.4 billion more people globally. By identifying where irrigation can be expanded under a warmer climate, this work may serve as a starting point for investigating socioeconomic factors of irrigation expansion and may guide future research and resources toward those agricultural communities and water management institutions that will most need to adapt to climate change.


Water Policy ◽  
2013 ◽  
Vol 15 (5) ◽  
pp. 816-829 ◽  
Author(s):  
Fanus Asefaw Aregay ◽  
Zhao Minjuan ◽  
Zahra Masood Bhutta

Irrigated agricultural production is the backbone of the Chinese agricultural sector, but the increasing demand for irrigation water, its inefficient utilization and overuse of chemical inputs, accompanied by the short supply of water resources have endangered the nation's agricultural and environmental sustainability. The Chinese government has proposed a water pricing policy with the expectation of improving the efficiency of utilizing irrigation water and fertilizer, to mitigate these problems. With the main objective of this paper being to assess the impact of this policy on water demand and environmental sustainability, a positive mathematical programming model was adopted to simulate different irrigation water pricing scenarios based on farm-level primary data from three irrigation districts along the Weihe River basin. The main parameter for assessing water demand was the change in total water consumption relative to the base year, while change in fertilizer consumption and water demand was determined to evaluate the impact of pricing policy on environment sustainability. According to the results, irrigation water demand and fertilizer consumption were mostly price inelastic to water pricing. This implies that water pricing policy can have only a minor role in regulating the water demand and environment in the region even when the base-year water price is doubled.


2020 ◽  
Author(s):  
Sujong Lee ◽  
Halim Lee ◽  
Hyun-Woo Jo ◽  
Youngjin Ko ◽  
Chul-Hee Lim ◽  
...  

<p>In 2019, The Food and Agriculture Organization(FAO) announced that North Korea was a food shortage country and which is closely related to the agricultural drought frequency. These agricultural drought frequencies derived from global climate change are increasing and in terms of climate change, agricultural drought is not just a national problem, but a global scale issue. To respond to agricultural drought-related with food shortage, various studies and projects are conducted based on the remote sensing data and modeling such as hydrological model, crop model, but access to public data in North Korea is limited, and also objectivity is difficult to be guaranteed. In this study, the estimation of rice yield and irrigation water demand based on the RCP (Representative Concentration Pathway) climate change scenario was conducted using Environmental Policy Integrated Climate(EPIC) model which calculates various variables related to agriculture by using climatic data, Soil data and topographic data. For validating the parameter of the model, the study area was set to the Korean Peninsula and the parameter was set stepwise compared results of the model with South Korea national statistics. The results of rice yield and irrigation water demand in the Korean Peninsula was validated by using statistics of international organizations. The assessment of Rice Yield and Irrigation Water Demand Change based on the EPIC model is considered a method for complementing the field test and statistical limitations in North Korea. This study can be used as basic data for agricultural drought in North Korea and Based on the model results, it is necessary to concern food security.</p>


2020 ◽  
Vol 3 (1) ◽  
pp. 387-394
Author(s):  
Ivan Mirza ◽  
Ella Meilianda ◽  
Azmeri Azmeri

The Cubo Trienggadeng Irrigation scheme has a potential area of 1,545 Ha while the functional area is 1,090 Ha. Based on the Irrigation Network scheme, Cubo Trienggadeng Irrigation Area consists of 3 (three) zones: Zone I, Zone II and Zone III. In Zone III of the Cubo Trienggadeng Irrigation Area which is the latest area receiving water from the Cubo Trienggadeng Weir often occurs in water shortages especially during the Gadu planting season (second planting season). Embung Paya Sepat is the reservoar found in Zone III D.I. Cubo Trienggadeng that is not being fully optimized in use. This study aims to optimize the utilization of Paya Sepat Reservoar so that it can meet irrigation water demand in Zone III D.I Cubo Trienggadeng by using the Water Balance method. This reservoar does not have a channel that supplies inflow discharge, so rainwater harvesting becomes a parameter in analyzing the supply of water to the reservoar. The optimization technique used uses a non-linear program using the Solver facility in Microsoft Excel software. Based on the results of the calculation of irrigation water requirements for an area of 204.50 Ha in the Gadu planting season, the maximum volume of irrigation water demand is 40,461,55 m3 at first periode in June, from the results of the optimization using the Maximize Release method, the results show that the water reservoar in Paya Sepat Reservoar can meet the water requirements in the Gadu planting season with an average reliability of 100%.. Therefore it is necessary to regulate the release of irrigation water that is well regulated and coordinated between the reservoar management and water users/farmers.


Author(s):  
Heman Das Lohano ◽  
Fateh Muhammad Marri

Water resources in Sindh province of Pakistan are under significant pressure due to increasing and conflicting water demand from municipalities for domestic users, agriculture and industries, and requirements of environmental flows. Population growth and climate change are likely to pose serious challenges to households and economic sectors that depend on water. This study estimates the present water demand from municipalities, agriculture and industries, and its future projections by the year 2050 in Sindh. The study also evaluates the impact of climate change on sectoral water demand and assesses the water requirements for the environmental flows. The results show that presently the total water demand for these sectors in Sindh is 44.06 Million Acre Feet (MAF). Agriculture is the largest consumer of water, accounting for 95.24 percent of the total water demand. Municipal water demand accounts for 2.61 percent while industrial water demand accounts for 1.88 percent. The demand for water in these sectors is expected to rise by 10 percent from 2018 to 2050. Moreover, depending on climate change scenario, the total water demand in these three sectors is likely to rise by 16 to 25 percent from 2018 to 2050. In additions, water requirements for the environmental flows have been indicated as 10 MAF in the National Water Accord of 1991. The findings of this study call for policy measures and strategies for management of water resources in Sindh.


2021 ◽  
Vol 25 (2) ◽  
pp. 637-651
Author(s):  
Michel Le Page ◽  
Younes Fakir ◽  
Lionel Jarlan ◽  
Aaron Boone ◽  
Brahim Berjamy ◽  
...  

Abstract. In the context of major changes (climate, demography, economy, etc.), the southern Mediterranean area faces serious challenges with intrinsically low, irregular, and continuously decreasing water resources. In some regions, the proper growth both in terms of cropping density and surface area of irrigated areas is so significant that it needs to be included in future scenarios. A method for estimating the future evolution of irrigation water requirements is proposed and tested in the Tensift watershed, Morocco. Monthly synthetic crop coefficients (Kc) of the different irrigated areas were obtained from a time series of remote sensing observations. An empirical model using the synthetic Kc and rainfall was developed and fitted to the actual data for each of the different irrigated areas within the study area. The model consists of a system of equations that takes into account the monthly trend of Kc, the impact of yearly rainfall, and the saturation of Kc due to the presence of tree crops. The impact of precipitation change is included in the Kc estimate and the water budget. The anthropogenic impact is included in the equations for Kc. The impact of temperature change is only included in the reference evapotranspiration, with no impact on the Kc cycle. The model appears to be reliable with an average r2 of 0.69 for the observation period (2000–2016). However, different subsampling tests of the number of calibration years showed that the performance is degraded when the size of the training dataset is reduced. When subsampling the training dataset to one-third of the 16 available years, r2 was reduced to 0.45. This score has been interpreted as the level of reliability that could be expected for two time periods after the full training years (thus near to 2050). The model has been used to reinterpret a local water management plan and to incorporate two downscaled climate change scenarios (RCP4.5 and RCP8.5). The examination of irrigation water requirements until 2050 revealed that the difference between the two climate scenarios was very small (< 2 %), while the two agricultural scenarios were strongly contrasted both spatially and in terms of their impact on water resources. The approach is generic and can be refined by incorporating irrigation efficiencies.


Sign in / Sign up

Export Citation Format

Share Document