scholarly journals Identification of multi-antibiotic resistant bacteria isolated from Vietnamese climbing perch (Anabas testudineus) on fish farms in Ho Chi Minh City, Vietnam

2021 ◽  
Vol 947 (1) ◽  
pp. 012036
Author(s):  
Thanh Luan Nguyen ◽  
Kien Cuong Tran ◽  
Thu Nha Nguyen Thi ◽  
Lan Phan-Hoang Nguyen ◽  
Nga Tran Thi ◽  
...  

Abstract Climbing perch (Anabas testudineus) is considered a cultured species with high economic value and is widely distributed in several Asian countries, including Vietnam. In climbing perch aquaculture, antibiotic and antibacterial agents have been overused, leading to the emergence of antibiotic-resistant bacteria or genes in the aquatic environment as well as in the seafood products. These antibiotic-resistant bacteria and/or genes can then be spread to human through the food chain, generating detrimental consequences for public health and environment. In this study, 14 bacterial strains were isolated from Vietnamese climbing perch collected from various fish farms in Ho Chi Minh City which possess abnormal symptoms on the outside and in their organs. These bacterial strains were then subjected to several biochemical tests to characterize their colony morphologies. Besides, gene sequencing was performed and as compared to the 16S rRNA, 4 bacterial strains were identified with a high percentage in similarity, including Pseudomonas aeruginosa (99.7%), Aeromonas caviae (99.93%), Kosakonia sacchari (100%), and Edwardsiella ictaluri (99.44%). Additionally, these bacteria showed high levels of antibiotic resistance against beta-lactam, tetracycline, and others. Taken together, these results showed that the four identified bacterial strains isolated from Vietnamese climbing perch circulated in fish farms in Ho Chi Minh City. Their current status of multi-antibiotic resistance indicates further alternative sources of antimicrobial agents, for example, natural compounds, to overcome antibiotic resistance. It is then crucial to identify fish diseases, the associated pathogens, and the new alternatives for antibiotics to protect aquatic ecosystems and water resources.

2020 ◽  
Author(s):  
Jawad Ali ◽  
Malik Owais Ullah Awan ◽  
Gulcin Akca ◽  
Iftikhar Zeb ◽  
Bilal AZ Amin ◽  
...  

AbstractAntibiotics discovery was a significant breakthrough in the field of therapeutic medicines, but the over (mis)use of such antibiotics (n parallel) caused the increasing number of resistant bacterial species at an ever-higher rate. This study was thus devised to assess the multi-drug resistant bacteria present in sanitation-related facilities in human workplaces. In this regard, samples were collected from different gender, location, and source-based facilities, and subsequent antibiotic sensitivity testing was performed on isolated bacterial strains. Four classes of the most commonly used antibiotics i.e., β-lactam, Aminoglycosides, Macrolides, and Sulphonamides, were evaluated against the isolated bacteria.The antibiotic resistance profile of different (70) bacterial strains showed that the antibiotic resistance-based clusters also followed the grouping based on their isolation sources, mainly the gender. Twenty-three bacterial strains were further selected for their 16s rRNA gene based molecular identification and for phylogenetic analysis to evaluate the taxonomic evolution of antibiotic resistant bacteria. Moreover, the bacterial resistance to Sulphonamides and beta lactam was observed to be the most and to Aminoglycosides and macrolides as the least. Plasmid curing was also performed for MDR bacterial strains, which significantly abolished the resistance potential of bacterial strains for different antibiotics. These curing results suggested that the antibiotic resistance determinants in these purified bacterial strains are present on respective plasmids. Altogether, the data suggested that the human workplaces are the hotspot for the prevalence of MDR bacteria and thus may serve the source of horizontal gene transfer and further transmission to other environments.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1841
Author(s):  
Thanaporn Chuen-Im ◽  
Korapan Sawetsuwannakun ◽  
Pimmnapar Neesanant ◽  
Nakarin Kitkumthorn

Antibiotic resistance of microorganisms is a serious health problem for both humans and animals. Infection of these bacteria may result in therapy failure, leading to high mortality rates. During an early intervention program process, the Sea Turtle Conservation Center of Thailand (STCCT) has faced high mortality rates due to bacterial infection. Previously, investigation of juvenile turtle carcasses found etiological agents in tissue lesions. Further determination of sea water in the turtle holding tanks revealed a prevalence of these causative agents in water samples, implying association of bacterial isolates in rearing water and infection in captive turtles. In this study, we examined the antibiotic resistance of bacteria in seawater from the turtle holding tank for a management plan of juvenile turtles with bacterial infection. The examination was carried out in three periods: 2015 to 2016, 2018, and 2019. The highest isolate numbers were resistant to beta-lactam, whilst low aminoglycoside resistance rates were observed. No gentamicin-resistant isolate was detected. Seventy-nine isolates (71.17%) were resistant to at least one antibiotic. Consideration of resistant bacterial and antibiotic numbers over three sampling periods indicated increased risk of antibiotic-resistant bacteria to sea turtle health. Essentially, this study emphasizes the importance of antibiotic-resistant bacterial assessment in rearing seawater for sea turtle husbandry.


Sign in / Sign up

Export Citation Format

Share Document