scholarly journals Forecasting the Future Drought Indices Due to the Effects of Climate Change in Al Najaf City, Iraq.

2022 ◽  
Vol 961 (1) ◽  
pp. 012040
Author(s):  
H H Mahdi ◽  
T A Musa ◽  
Z A A Al-Rammahi ◽  
E J Mahmood

Abstract Drought is a natural disaster associated with a shortage of water availability for specified region within a specific time period. The impacts of drought are significant and extend to damage many important life aspects such as environmental, economic, and social activities. The forecasting of the drought events is an essential element for planning this disaster, reducing its effectiveness and response. The three characteristic frequency, intensity, and time period are the key parts for forecasting and assessment of droughts. Here, two drought indices (The Reconnaissance Drought Index (RDI), standardized precipitation index (SPI)) were used for forecasting of the future drought within Al Najaf city, Iraq. Thirty years meteorological data (average monthly precipitation and temperature) were used for the period (2021–2050) downloaded from the site of the Centre for Environmental Data Analysis (CEDA) for five grid points to cover overall study area. The computation of these indices conducted at a 12-month time scale and included the calculation of potential evapotranspiration by Thorthwaite method. The temporal drought intensity as well as drought frequency configurations were calculated and analyzed for each drought index. The results showed that the general average drought level expected will mildly dry while the maximum drought level expected will extremely dry. The more severe seasons of drought were forecasted in the years 2038, 2034 and 2021, respectively. Also, the prevailing event will be a one year drought and the maximum drought interval occurred within the study period will four consecutive years, with a 3.33% exceedance probability.

2019 ◽  
Vol 43 (5) ◽  
pp. 627-642 ◽  
Author(s):  
Luis Eduardo Quesada-Hernández ◽  
Oscar David Calvo-Solano ◽  
Hugo G Hidalgo ◽  
Paula M Pérez-Briceño ◽  
Eric J Alfaro

The Central American Dry Corridor (CADC) is a sub-region in the isthmus that is relatively drier than the rest of the territory. Traditional delineations of the CADC’s boundaries start at the Pacific coast of southern Mexico, stretching south through Central America’s Pacific coast down to northwestern Costa Rica (Guanacaste province). Using drought indices (Standardized Precipitation Index, Modified Rainfall Anomaly Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Palmer Drought Z-Index and the Reconnaissance Drought Index) along with a definition of aridity as the ratio of potential evapotranspiration (representing demand of water from the atmosphere) over precipitation (representing the supply of water), we proposed a CADC delineation that changes for normal, dry and wet years. The identification of areas that change their classification during extremely dry conditions is important because these areas may indicate the location of future expansion of aridity associated with climate change. In the same way, the delineation of the CADC during wet extremes allows the identification of locations that remain part of the CADC even during the wettest years and that may require special attention from the authorities.


2021 ◽  
Vol 7 (12) ◽  
pp. 2130-2149
Author(s):  
Shashi Shankar Ojha ◽  
Vivekanand Singh ◽  
Thendiyath Roshni

Drought assessment is crucial for effective water resources management in a river basin. Drought frequency has increased worldwide in recent years due to global warming. In this paper, an attempt is made to assess the meteorological drought in the Punpun river basin, India using two globally accepted drought indices namely, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI at 1-, 3-, 6-, 9-, and 12-month timescale were obtained to analyze the temporal variability of different drought levels. Correlation analysis of available observed data and gridded data has been carried out and the correlation coefficient was found to be 0.956. Hence gridded rainfall data from the year 1991 to 2020 is used for further analysis. Potential evapotranspiration (PET) used in the calculation of SPEI was computed by the Thornthwaite method. Water deficit was observed throughout as there is a decrease in rainfall and an increase in PET during the selected period. The results show that the period 2004 to 2006 and 2009 to 2010 years are observed as drought periods by both indices for almost all timescale. The intensity and duration of drought have increased after 2004. A negative trend of both the indices have been observed in all seasons on all timescale, which clearly shows a transition from near normal to moderately dry during the selected time period. The highest correlation between both the indices is for the 12-month scale with R² value 0.92 and the RMSE value 0.28. The main outcome of this study is that both SPI and SPEI show a strong correlation on same time scales adopted in this study. The dependency of SPEI on temperature is also observed in this study. Doi: 10.28991/cej-2021-03091783 Full Text: PDF


2021 ◽  
Author(s):  
Oualid HAKAM ◽  
◽  
Abdennasser BAALI ◽  
Touria EL KAMEL ◽  
Ahouach Youssra ◽  
...  

Due to the lack of studies on drought in the Lower Sebou basin (LSB), the complexity of drought event and the difference in climate conditions. The identification of the most appropriate drought indices (DIs) to assess drought conditions has become a priority. Therefore, assessing the performance of different drought indices was considered in order to identify the universal drought indices that are well adapted to the LSB. Based on data availability, five DIs were used: Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration Index (SPEI), Reconnaissance Drought Index (RDI), self-calibrated Palmer Drought Severity Index (sc-PDSI) and Streamflow Drought Index (SDI). The DIs were calculated on an annual scale using monthly time series of precipitation, temperature and river flow from 1984-2016. Thornthwaite's method was used to calculate potential evapotranspiration (PET). Pearson's correlation (r) were analyzed. Furthermore, five decision criteria namely robustness, traceability, transparency, sophistication and scalability were used to evaluate the performance of these indices. The results proved the fact that SPI is suitable to detect the drought duration and intensity compared to other indices with high correlation coefficients especially in sub humid regions, knowing that it tends to give more results that are humid in stations with semi-arid climates. SPI, SPEI and RDI follow the same trend during the period studied. However, sc-PDSI appears to be the most sensitive to temperature and precipitation by overestimating the drought conditions. Eventually, the results of the performance evaluation criteria revealed that SPEI classified first (total score = 137) among other meteorological drought indices, followed by SPI, RDI and sc-PDSI.


2020 ◽  
Author(s):  
Jeongeun Won ◽  
Sangdan Kim

<p>In drought monitoring, it is very important to select climate variables to interpret drought. Most drought monitoring interprets drought as deficit in precipitation, so drought indices focused on the moisture supply side of the atmosphere have been mainly used. However, droughts can be caused not only by lack of rainfall, but also by various climate variables such as increase in temperature. In this regard, interest in potential evapotranspiration(PET), which is an moisture demand side of the atmosphere, is increasing and a PET-based drought index has been developed. However, complex droughts caused by various climate variables cannot be interpreted as a drought index that only considers precipitation or PET. In this study, we suggest a drought monitoring method that can reflect various future climate variables, including precipitation. In other words, copula-based joint drought index(CJDI), which incorporate standardized precipitation index(SPI) based on precipitation and evaporative demand drought index(EDDI) based on PET, is developed. CJDI, which considers both precipitation and PET, which are key variables related to drought, is able to properly monitor the drought events in Korea. In addition, future Drought severity – duration - frequency curves are derived to project future droughts compared to various drought indices. It is shown that CJDI can be used as a more reasonable drought index to establish the adaptation policy for future droughts by presenting the pattern of future droughts more realistically.</p><p><strong>Acknowledgment: </strong>This study was funded by the Korea Ministry of Environment (MOE) as Smart Urban Water Resources Management Program. (2019002950004)</p><p><strong>Keywords</strong>: Climate change; Copula; Drought; CJDI; Drought severity-duration-frequency curve</p>


2020 ◽  
Vol 11 (S1) ◽  
pp. 29-43 ◽  
Author(s):  
Okan Mert Katipoğlu ◽  
Reşat Acar ◽  
Selim Şengül

Abstract Drought incidents occur due to the fact that precipitation values are below average for many years. Drought causes serious effects in many sectors, such as agriculture, economy, health, and energy. Therefore, the determination of drought and water scarcity, monitoring, management, and planning of drought and taking early measures are important issues. In order to solve these issues, the advantages and disadvantages of five different meteorological drought indices were compared, and the most effective drought index was determined for monitoring drought. Accordingly, in the monthly, 3-month, and 12-month time period, covering the years between 1966 and 2017 (52 years), Standardized Precipitation Index (SPI), Statistical Z-Score Index (ZSI), Rainfall Anomaly Index (RAI), Standardized Precipitation Evapotranspiration Index (SPEI), and Reconnaissance Drought Index (RDI) were used. It was concluded that precipitation-based SPI and ZSI are similar patterns and precipitation, and temperature-based SPEI and RDI are similar patterns. Also, it has been determined that RAI is more effective than other indices in determining the periods of extreme drought or wet. Furthermore, SPEI and RDI have been found to be superior to other indices as they take into account the water consumption and climate effects caused by evapotranspiration.


2014 ◽  
Vol 46 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Siti Nazahiyah Rahmat ◽  
Niranjali Jayasuriya ◽  
Muhammed Bhuiyan

Droughts adversely impact rural and urban communities, industry, primary production and, thus, a country's economy. Drought monitoring is directed to detecting the onset, persistence and severity of the drought. In this study, meteorological drought indices such as the Standardized Precipitation Index (SPI), the Reconnaissance Drought Index (RDI) and deciles were assessed to investigate how well these indices reflect drought conditions in Victoria, Australia. The Theory of Runs was also used to identify the drought deficit. The study uses 55 years (1955–2010) of monthly precipitation and reference evapotranspiration data for five selected meteorological stations in Victoria, Australia. Results show that drought characterization using SPI and RDI provides a standardized classification of severity thus exhibiting advantages over deciles. As RDI considers both rainfall and potential evapotranspiration in calculations, it could be sensitive to climatic variability. For characterizing agricultural droughts, the application of the RDI is recommended. The use of the SPI was shown to be satisfactory for assessing and monitoring meteorological droughts. The SPI was also successful in detecting the onset and the end of historical droughts for the selected events.


2019 ◽  
Vol 33 (15) ◽  
pp. 5015-5033 ◽  
Author(s):  
Ruqayah Mohammed ◽  
Miklas Scholz

AbstractInvestigating the spatiotemporal distribution of climate data and their impact on the allocation of the regional aridity and meteorological drought, particularly in semi-arid and arid climate, it is critical to evaluate the climate variability effect and propose sufficient adaptation strategies. The coefficient of variation, precipitation concentration index and anomaly index were used to evaluate the climate variability, while the Mann-Kendall and Sen’s slope were applied for trend analysis, together with homogeneity tests. The aridity was evaluated using the alpha form of the reconnaissance drought index (Mohammed & Scholz, Water Resour Manag 31(1):531–538, 2017c), whereas drought episodes were predicted by applying three of the commonly used meteorological drought indices, which are the standardised reconnaissance drought index, standardized precipitation index and standardized precipitation evapotranspiration index. The Upper Zab River Basin (UZRB), which is located in the northern part of Iraq and covers a high range of climate variability, has been considered as an illustrative basin for arid and semi-arid climatic conditions. There were general increasing trends in average temperature and potential evapotranspiration and decreasing trends in precipitation from the upstream to the downstream of the UZRB. The long-term analysis of climate data indicates that the number of dry years has temporally risen and the basin has experienced succeeding years of drought, particularly after 1994/1995. There was a potential link between drought, aridity and climate variability. Pettitt’s, SNHT, Buishand’s and von Neumann’s homogeneity test results demonstrated that there is an evident alteration in the mean of the drought and aridity between the pre- and post-alteration point (1994).


2021 ◽  
Author(s):  
Tianliang Jiang ◽  
Xiaoling Su

<p>Although the concept of ecological drought was first defined by the Science for Nature and People Partnership (SNAPP) in 2016, there remains no widely accepted drought index for monitoring ecological drought. Therefore, this study constructed a new ecological drought monitoring index, the standardized ecological water deficit index (SEWDI). The SEWDI is based on the difference between ecological water requirements and consumption, referred to as the standardized precipitation index (SPI) method, which was used to monitor ecological drought in Northwestern China (NWRC). The performances of the SEWDI and four widely-used drought indices [standardized root soil moisture index (SSI), self-calibrated Palmer drought index (scPDSI), standardized precipitation-evaporation drought index (SPEI), and SPI) in monitoring ecological drought were evaluated through comparing the Pearson correlations between these indices and the standardized normalized difference vegetation index (SNDVI) under different time scales, wetness, and water use efficiencies (WUEs) of vegetation. Finally, the rotational empirical orthogonal function (REOF) was used to decompose the SEWDI at a 12-month scale in the NWRC during 1982–2015 to obtain five ecological drought regions. The characteristics of ecological drought in the NWRC, including intensity, duration, and frequency, were extracted using run theory. The results showed that the performance of the SEWDI in monitoring ecological drought was highest among the commonly-used drought indices evaluated under different time scales [average correlation coefficient values (r) between SNDVI and drought indices: SEWDI<sub></sub>= 0.34, SSI<sub></sub>= 0.24, scPDSI<sub></sub>= 0.23, SPI<sub></sub>= 0.20, SPEI<sub></sub>= 0.18), and the 12-month-scale SEWDI was largely unaffected by wetness and WUE. In addition, the results of the monitoring indicated that serious ecological droughts in the NWRC mainly occurred in 1982–1986, 1990–1996, and 2005–2010, primarily in regions I, II, and V, regions II, and IV, and in region III, IV, and V, respectively. This study provides a robust approach for quantifying ecological drought severity across natural vegetation areas and scientific evidence for governmental decision makers.</p>


2019 ◽  
Vol 50 (3) ◽  
pp. 901-914 ◽  
Author(s):  
Hsin-Fu Yeh

Abstract Numerous drought index assessment methods have been developed to investigate droughts. This study proposes a more comprehensive assessment method integrating two drought indices. The Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI) are employed to establish an integrated drought assessment method to study the trends and characteristics of droughts in southern Taiwan. The overall SPI and SDI values and the spatial and temporal distributions of droughts within a given year (November to October) revealed consistent general trends. Major droughts occurred in the periods of 1979–1980, 1992–1993, 1994–1995, and 2001–2003. According to the results of the Mann–Kendall trend test and the Theil–Sen estimator analysis, the streamflow data from the Sandimen gauging station in the Ailiao River Basin showed a 30% decrease, suggesting increasing aridity between 1964 and 2003. Hence, in terms of water resources management, special attention should be given to the Ailiao River Basin. The integrated analysis showed different types of droughts occurring in different seasons, and the results are in good agreement with the climatic characteristics of southern Taiwan. This study suggests that droughts cannot be explained fully by the application of a single drought index. Integrated analysis using multiple indices is required.


2020 ◽  
Vol 21 (7) ◽  
pp. 1513-1530 ◽  
Author(s):  
Lingcheng Li ◽  
Dunxian She ◽  
Hui Zheng ◽  
Peirong Lin ◽  
Zong-Liang Yang

AbstractThis study elucidates drought characteristics in China during 1980–2015 using two commonly used meteorological drought indices: standardized precipitation index (SPI) and standardized precipitation–evapotranspiration index (SPEI). The results show that SPEI characterizes an overall increase in drought severity, area, and frequency during 1998–2015 compared with those during 1980–97, mainly due to the increasing potential evapotranspiration. By contrast, SPI does not reveal this phenomenon since precipitation does not exhibit a significant change overall. We further identify individual drought events using the three-dimensional (i.e., longitude, latitude, and time) clustering algorithm and apply the severity–area–duration (SAD) method to examine the drought spatiotemporal dynamics. Compared to SPI, SPEI identifies a lower drought frequency but with larger total drought areas overall. Additionally, SPEI identifies a greater number of severe drought events but a smaller number of slight drought events than the SPI. Approximately 30% of SPI-detected drought grids are not identified as drought by SPEI, and 40% of SPEI-detected drought grids are not recognized as drought by SPI. Both indices can roughly capture the major drought events, but SPEI-detected drought events are overall more severe than SPI. From the SAD analysis, SPI tends to identify drought as more severe over small areas within 1 million km2 and short durations less than 2 months, whereas SPEI tends to delineate drought as more severe across expansive areas larger than 3 million km2 and periods longer than 3 months. Given the fact that potential evapotranspiration increases in a warming climate, this study suggests SPEI may be more suitable than SPI in monitoring droughts under climate change.


Sign in / Sign up

Export Citation Format

Share Document