scholarly journals Numerical Performance of Energy Dissipation Slotted Plate for Bridge Unseating Prevention

2022 ◽  
Vol 961 (1) ◽  
pp. 012071
Author(s):  
Mustafa Kareem Hamzah ◽  
Farzad Hejazi

Abstract Recently, the bridge unseating prevention devices are widely used in active seismic zones. These devices are stiffness dependant, velocity dependant and energy dissipation devices. The energy dissipation devices are designed to overcome the energy that transfers from bridge substructure to superstructure. However, the current devices are not controlled to function with different ground motion intensities and should be replaced after yielding. Therefore, this research introduced a slotted plate energy dissipation device with three parts, each part function in known deformation range. The slotted plate behavior has been evaluated numerically by finite element method. Displacement control and load control analysis has been done, and then the effect of steel grade is studied to predict the suitable steel properties for designing the plate. Moreover, the slotted plate behavior is applied in 3D bridge seismic analysis to assess the multi-level performance and the ability to overcome the seismic effect on the bridge in longitudinal direction. The results approved the capability of the plate to dissipate energy in multi-stage of deformation. The lower steel grade is suitable for low to moderate earthquake zone and the high grade can be used in severe ground motion areas. Furthermore, the bridge longitudinal behavior has enhanced with different steel grades of the slotted plate.

Geosciences ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 488 ◽  
Author(s):  
Wojciech Migda ◽  
Marcin Szczepański ◽  
Natalia Lasowicz ◽  
Anna Jakubczyk-Gałczyńska ◽  
Robert Jankowski

Pounding between adjacent buildings during ground motion may result in structural damage or lead to total destruction of structures. The research on the phenomenon has recently been much advanced; however, the analyses have been carried out only for concrete, steel, and masonry structures, while pounding between wooden buildings has not been studied so far. The aim of this paper is to show the results of detailed non-linear seismic analysis of inter-story pounding between the wood-framed buildings modelled by using the finite element method. Firstly, the modal analysis of the structures was conducted. Then, the detailed non-linear analysis of earthquake-induced collisions between two wood-framed buildings of different heights was carried out. The results of the analysis indicate that the behavior of both structures in the longitudinal as well as in the transverse direction is significantly influenced by interactions. The response of the taller building is increased in both directions. On the other hand, the response of the lower building is decreased in the longitudinal direction, while it is increased in the transverse one. The results of the study presented in the paper indicate that, due to deformability of buildings made of wood, structural interactions may change their responses much more, as compared to steel, reinforced concrete, or masonry structures.


2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.


Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Marta Savor Novak ◽  
Damir Lazarevic ◽  
Josip Atalic ◽  
Mario Uros

Although post-earthquake observations identified spatial variation of ground motion (i.e., multiple-support excitation) as a frequent cause of the unfavorable response of long-span bridges, this phenomenon is often not taken into account in seismic design to simplify the calculation procedure. This study investigates the influence of multiple-support excitation accounting for coherency loss and wave-passage effects on the seismic response of reinforced concrete deck arch bridges of long spans founded on rock sites. Parametric numerical study was conducted using the time-history method, the response spectrum method, and a simplified procedure according to the European seismic standards. Results showed that multiple-support excitation had a detrimental influence on response of almost all analyzed bridges regardless of considered arch span. Both considered spatial variation effects, acting separately or simultaneously, proved to be very important, with their relative significance depending on the response values and arch locations analyzed and seismic records used. Therefore, it is suggested that all spatially variable ground-motion effects are taken into account in seismic analysis of similar bridges.


Author(s):  
Gaurav P. Bhende

The recent natural calamities, especially earthquakes, are making engineering design requirements stringent. The Process Plant Piping is no exception to it. Analyzing the seismic effect by ‘Static Equivalent Method’ is a common practice compared to performing ‘Dynamic Analysis’. This paper starts with the basic reason of earthquake and its effect on the above ground piping system. Further it compares between the results opted based on computer based ‘Spectrum Analysis (Dynamic Analysis) Method’ and ‘Static Equivalent Method’ as per the requirements of ASCE 7. One of the assumptions in Static or Dynamic seismic analysis is — ‘Pipe supports are rigid’. However, in reality the supports, especially structural supports, show elastic behavior based on their material and geometric properties. At the end, this paper compares between the results of seismic analysis performed by considering ‘Supports as rigid’ and ‘Supports as elastic’ and comments on it along with minimum requirements for safe design.


Sign in / Sign up

Export Citation Format

Share Document