scholarly journals Analysis of tensile strength, microstructure, and fractograph of Al-Si with snail shell powder as reinforce agent

2021 ◽  
Vol 1034 (1) ◽  
pp. 012131
Author(s):  
Poppy Puspitasari ◽  
Galy Dwi Susilo ◽  
Aminnudin ◽  
Yanuar Rohmat Aji Pradana ◽  
Andika Bagus Nur Rahma Putra ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Isaac O. Igwe ◽  
Obumneme E. Ezeani

The transport of three aromatic solvents (benzene, toluene and xylene) through snail shell powder filled natural rubber was studied at 313, 333, and 353 K by conventional weight-gain experiments. The effects of snail shell powder content, particle size, nature of solvent, and temperature on the transport characteristics of natural rubber were determined. The estimated Arrhenius activation energies for the processes of sorption, diffusion, and permeation showed that the activation energies were highest in xylene at all the filler contents investigated. The calculated enthalpies, and entropies of sorption were all positive for the solvents investigated. Similarly, the change in the estimated free energies of sorption were all positive; an indication of the non-spontaneity of the solubility of snail shell powder filled natural rubber in the aromatic solvents at 313 k.


2021 ◽  
Author(s):  
Suseela Alla ◽  
SS. Asadi

Abstract Snail shells are the discarded bio-shell waste from restaurants, and oceans creating huge environmental problems for society. Living organisms are harmed when these shells are released. As previously stated, the work focuses primarily on the utilisation of snail shell powder as a raw ingredient in cement mortar. The mechanical and durability features of snail shell-based cement mortar were compared to the nominal mortar in this study. Snail shell powder, ranging from 0% to 35%, was used to partially substitute cement in mortar, with a variation of 5%. XRD (X-Ray Diffraction) was used to determine the chemical composition of both mixes. The mechanical properties of mortar for both mixes were determined using a compressive strength test. The tests on cement mortar viz., Water Absorption, Sorptivity, Acid Durability, and Rapid Chloride Permeability Test (RCP Test) were compared with nominal mortar mix. According to the results of the investigation, the optimum use of snail shell powder is 30%. The durability of both mixes increased by the increase of the snail shell powder. To detect the C-S-H gel formations, microstructural analysis was performed for both mixes.


2019 ◽  
Vol 130 ◽  
pp. 01021
Author(s):  
Matt Kirby ◽  
Benjamin Lewis ◽  
Benjamin Peterson ◽  
Juliana Anggono ◽  
Walter Bradley

Fine powder produced from coconut shells (CSP) has been found to be excellent functional filler in polypropylene, significantly increasing flexural and tensile moduli, slightly increasing tensile strength, and good retention of Izod impact strength at weight percentages less than 20 %. The research presented in this paper explores the temperature processing window for coconut shell powder filled polypropylene and the change in the rheological behavior of the polypropylene due to the addition of CSP as functional filler in this processing temperature window. The reason for the simultaneous increase in flexural modulus, tensile strength, and good retention of Izod impact behavior is also investigated


2017 ◽  
Vol 25 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Lefan Li ◽  
Zongqiang Zeng ◽  
Zhifen Wang ◽  
Zheng Peng ◽  
Xiaodong She ◽  
...  

The oyster shell powder/natural rubber composites were successfully prepared by blending the modified oyster shell powder with natural rubber (NR). The oyster shell powder with a particle size of 209 nm were well distributed within the rubber matrix. The characteristic Fourier transform infrared spectroscopy (FTIR) absorption bands of both oyster shell powder and natural rubber were observed in the FTIR spectra of NR/oyster shell powder composites. The C-O absorption bands in carbonates of composites exhibit a shift from 1425 cm−1 to 1446 cm−1 which suggests the bonds formed among oyster shell powder, earth coupling agent and NR. The tensile strength and stress at 500% elongation increased with rising of the earth coupling agent. Composites with 1.5 parts per hundred rubber (phr) coupling agent achieved the highest mechanical properties, where an increase of 13.4% in tensile strength was found. The tensile strength and tear strength increased along with an increment of oyster shell powder. When the content of oyster shell powder attained 25–30 phr, the composites exhibited the best mechanical properties. In particular, the tensile strength and tear strength increased by 27.9% and 17.2% when compared with those of the control samples. Furthermore, the addition of the oyster shell powder leads to the improvement of thermal stability which is evidenced by an increase of 8 °C in the initial degradation temperature. The improvement of the mechanical properties and thermal stability of the composites have demonstrated that the oyster shell powder can be used as potential fillers for natural rubber.


2012 ◽  
Vol 27 (1) ◽  
pp. 93
Author(s):  
Jae Woo Jung ◽  
Byung Ook Lee ◽  
Jae Hee Lee ◽  
Sung Woon Park ◽  
Bo Min Kim ◽  
...  
Keyword(s):  

The study of strength behaviour of M20 grade concrete, by exchanging the cement partly by powder of egg shell, for which an experimental tests were carried out and the effect of egg shell powder (0%,5%.10%,15%) on compressive strength characteristics were studied. The result of this present investigation shows that the replacement of 5% of cement with egg shell powder attains the maximum compressive strength. The best and economical percentage exchange of replacement of powder of egg shell (ESP) with cement is about 5% and also reduces the cost of concrete with the use of powder of egg shell, which is available freely as raw material and then it is grinded well to make powder. The egg shell is available from municipal solid waste and is mixed in powder form in concrete by exchanging the cement and is found that 5% replacement is very effective in the improvement of strength properties when compared to the conventional concrete. Also the exchangement of 5% ESP in cement gives higher split tensile strength as compared to other cement ingredient mixtures. In this study, it is fixed that 0.45 is the w/c ratio and it produces medium degree of workability which is suitable for most of the concrete mixtures on site. The addition of eggshell powder as filler in concrete has improved the strength of concrete and also improved and better split tensile strength.


2021 ◽  
Vol 945 (1) ◽  
pp. 012064
Author(s):  
Tan Wuan Chien ◽  
Mathialagan Muniyadi ◽  
Yamuna Munusamy

Abstract The saturation point of Mimusop elengi seed shell powder (MESSP) and the effect of MESSP addition on the mechanical, thermal, water absorption and morphological properties of polypropylene (PP) composites were studied. Tensile fracture, physio-mechanical properties and thermal behavior of composites were characterized using tensile and impact testing, thermogravimetric analysis, scanning electron micrograph, and differential scanning calorimetry. Processability of composites were feasible up to 20 wt. % MESSP by which agglomeration of MESSP and poor dispersion of MESSP in PP was observed above 20 wt% MESSP loading. Increasing MESSP loading showed tremendous improvement in tensile modulus and impact strength, whereas tensile strength and elongation at break were reduced. Water absorption and thermal decomposition of composites remain comparable with addition of MESSP up to 20 wt. %. Reduction of tensile strength was attributed by weak adhesion between MESSP and PP. However, morphological analysis revealed the presence of physical interaction via PP chain interlocking on MESSP surface.


Sign in / Sign up

Export Citation Format

Share Document