scholarly journals Study of waste tyre granulates and polypropylene (PP) fibre as oil sorbent

2021 ◽  
Vol 1053 (1) ◽  
pp. 012004
Author(s):  
Nik Khairul Irfan Nik Ab Lah ◽  
Muhammad Naqiuddin Zahid ◽  
Mohd Fazril Irfan Ahmad Fuad ◽  
Tengku Amran Tengku Mohd ◽  
Nur Shuhadah Japperi
Keyword(s):  
2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
A. O. Odeh ◽  
L. A. Okpaire

The rapid growth of the automobile industry has led to the abundance and indiscriminate disposal of waste tyres which causes environmental pollution and also lead to serious health problems. The absorption of crude oil using waste tyre powder (WTP) was investigated. A three variable Box-Behnken design was used to study the effect of particle size, contact time and temperature on the oil sorption capacity of WTP. Optimization was carried out using Response Surface Methodology (RSM). A quadratic model was obtained to predict the oil sorption capacity of WTP as a function of particle size, contact time and temperature. The optimum conditions of the sorption process obtained from RSM gave a temperature of 30.19oC, contact time 59.04 mins and particle size 0.15mm. A maximum oil sorption capacity of 4.71 g/g was obtained at these optimized conditions. Also, a comparison between the oil sorption efficiency of fresh tyre powder and regenerated tyre powder subjected to the same conditions of particle size, contact time and temperature were carried out. It was shown that the oil sorption capacity of the fresh tyre powder was higher than that of regenerated tyre powder.


2021 ◽  
pp. 0734242X2110047
Author(s):  
Junqing Xu ◽  
Jiaxue Yu ◽  
Wenzhi He ◽  
Juwen Huang ◽  
Junshi Xu ◽  
...  

Pyrolysis offers a more focused alternative to waste tyres treatment. Pyrolytic carbon black (CBp), the main product of waste tyre pyrolysis, and its modified species can be applied to tyre manufacturing realizing its high-value utilization. Modified pyrolytic carbon black/natural rubber composites prepared by a wet compounding (WC) and latex mixing process have become an innovative technology route for waste tyre remanufacturing. The main properties and applications of CBp reported in recent years are reviewed, and the main difficulties affecting its participation in tyre recycling are pointed out. The research progress of using WC technology to replace dry mixing manufacturing of new tyres is summarized. Through literature data and comparative studies, this paper points out that the characteristic of high ash content can be well utilized if CBp is applied to tyre manufacturing. This mini-review proposes a new method for high-value utilization of CBp. The composite mixing of CBp and carbon nano-materials under wet conditions is conducive to the realization of their good dispersion in the rubber matrix. This provides a new idea for customer resource integration and connection of industry development between the tyre production industry and waste tyre disposal management.


2021 ◽  
Author(s):  
Noor Najmi Bonnia ◽  
Ain Zanaya Zanuri ◽  
Nor Dalila Nor Affendi ◽  
Nurdiana Samsulrizal

2015 ◽  
Vol 802 ◽  
pp. 225-230
Author(s):  
Farah Noor Abdul Aziz ◽  
Sani Mohammed Bida ◽  
Noor Azline Mohd Nasir ◽  
Nor Azizi Safiee ◽  
Mohd Saleh Jaafar

Addition or replacement of waste tyre in mortars and concretes in lightweight aggregate concrete composites are popular in concrete material research although the mechanical properties of the composite are reduced. Various research studies have been conducted in an effort to improve the mechanical properties of concretes and mortars containing waste tyre particles using chemicals and additives which lead to increase cost. This approach presents an economical and sustainable method, through adding oil palm fruit fibre (OPFF) at 0.5, 1%, and 1.5% by mass of cement content into the matrix and pre-treating the tyre crumb aggregate (0-40%) by volume with cement, in order to improve the properties of the composite. Mechanical properties including compressive strength, split tensile strength and flexural strength were measured on the mortar specimens. Results showed the addition of 0.5% OPFF in 10% treated tyre crumb mortar gives the best improvement in the mechanical strengths of mortar modified with treated tyre crumb.


2015 ◽  
Vol 57 (39) ◽  
pp. 18560-18571 ◽  
Author(s):  
Wenbo Chai ◽  
Xiaoyan Liu ◽  
Xinying Zhang ◽  
Beibei Li ◽  
Tiantian Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document