scholarly journals Estimation of Tool Life by Industrial Method and Taylors Method Using Coated Carbide Insert in Turning of Work-Material Ss316l

2021 ◽  
Vol 1070 (1) ◽  
pp. 012101
Author(s):  
Prince Dabreo ◽  
Samhita Pashte ◽  
Larisa Dmonte ◽  
Lavin Dabre
2015 ◽  
Vol 15 (2) ◽  
pp. 205-214
Author(s):  
Anil Ghubade ◽  
Ajay Gupta ◽  
Abhishek Abrol ◽  
Satsimran Singh

AbstractMetal cutting industries are facing challenges to increase production rate at minimum cost with improvement in quality in the final product. The increasing need of productivity, closed tolerance, dimensional stability and cost put tremendous pressure on manufacturing industries to design and develop new technologies to meet the required goal. Hence, coating over the existing tool plays an important role in achieving higher production rate, better tool life and minimization in cost. In this paper, we analyzed the effect of uncoated and coated carbide (triple and six layer coated) tool on tool life, surface roughness and material removal rate during dry turning of EN27 steel. Taguchi approach is used to find the best optimum parameter setting for turning of EN27 steel. A L9 orthogonal array, signal-to-noise ratio and ANOVA are applied to study machining parameters (Spindle speed, Feed rate and Depth of cut) in consideration of tool life (VB), material removal rate (MRR) and surface finish (Ra). The experimental investigation shows that the best machining performance is achieved by six layer coated carbide insert compared to uncoated and triple coated carbide insert under the selected machining conditions.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771061 ◽  
Author(s):  
Duc Tran Minh ◽  
Long Tran The ◽  
Ngoc Tran Bao

In this article, an attempt has been made to explore the potential performance of Al2O3 nanoparticle–based cutting fluid in hard milling of hardened 60Si2Mn steel (50-52 HRC) under different minimum quantity lubrication conditions. The comparison of hard milling under minimum quantity lubrication conditions is done between pure cutting fluids and nanofluids (in terms of surface roughness, cutting force, tool wear, and tool life). Hard milling under minimum quantity lubrication conditions with nanofluid Al2O3 of 0.5% volume has shown superior results. The improvement in tool life almost 177%–230% (depending on the type of nanofluid) and the reduction in surface roughness and cutting forces almost 35%–60% have been observed under minimum quantity lubrication with Al2O3 nanofluids due to better tribological behavior as well as cooling and lubricating effects. The most outstanding result is that the uncoated cemented carbide insert can be effectively used in machining high-hardness steels (>50 HRC) while maintaining long tool life and good surface integrity (Ra = 0.08–0.35 µm; Rz = 0.5–2.0 µm, equivalent to finish grinding) rather than using the costlier tools like coated carbide, ceramic, and (P)CBN. Therefore, using hard nanoparticle–reinforced cutting fluid under minimum quantity lubrication conditions in practical manufacturing becomes very promising.


2015 ◽  
Vol 813-814 ◽  
pp. 317-321 ◽  
Author(s):  
C. Ramesh Kannan ◽  
P. Padmanabhan ◽  
K.P. Vasanthakumar

This paper is to evaluate the cutting force and surface roughness in turning of Glass fiber reinforced plastics (E-glass fiber) using coated carbide insert. The comparison of the results with uncoated carbide inserts. The carbide insert is coated by multilayer chemical vapour deposition process, the coating elements are TiN/Al2O3/TiCN. The experiment is carried out in the conventional lathe machine under dry condition by varying the three cutting parameter such as speed, feed and depth of cut. The cutting force is measured using a lathe tool dynamometer and surface roughness are measured by using surf tester.The result of the experiment shows the effect of machining parameter on cutting force and surface roughness. The results have confirmed that the coated carbide insert has better results than uncoated and tool life is increased.


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.


2014 ◽  
Vol 625 ◽  
pp. 60-65 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Tatsumi Ohno ◽  
Ryuta Nakatsukasa ◽  
Mamoru Hayashi ◽  
Tomohiko Tabata

This paper describes the applicability of air jet assisted (AJA) machining to stainless steel and titanium alloy at high cutting speeds in terms of tool wear and tool life. A specially designed tool holder with an air nozzle very close to the tool tip was prepared for turning stainless steel. From the experimental results, it was found that the application of flood coolant from the side of the end flank face leads to better result in tool life in AJA machining of stainless steel than that from the side of the side flank face. The assistance of air jet can improve the tool life of the M35 CVD coated insert in machining of the stainless steel by 36 to 100% under the optimal conditions in comparison with wet machining. It was also found that the air jet assistance extended the tool life of the S10 PVD coated insert by 48% in turning titanium alloy. The tool life extension of the coated insert in AJA machining titanium alloy is much longer than that of an uncoated carbide insert.


2010 ◽  
Vol 33 ◽  
pp. 173-176
Author(s):  
X.Y. Wang ◽  
S.Q. Pang ◽  
Q.X. Yu

The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of superalloy GH2132. This achieved by analysis of tool life at different cutting conditions .Investigations of tool wear and tool life testing are intended to establish T-V formulas, and then analyzed the characteristics of coating . Through a series of comparative tests, Using TiAlN coatings as the contrast materialthe results show that the new coating tools that are named C7 plus coatings are suitable for cutting superalloy GH2132. The cutting speed and processing efficiency can be increased effectively.


Sign in / Sign up

Export Citation Format

Share Document