scholarly journals Light autoclaved foam concrete with foam glass-based aggregate

2021 ◽  
Vol 1205 (1) ◽  
pp. 012006
Author(s):  
P Bibora ◽  
V Prachar ◽  
O Svitak ◽  
R. Zavrelova

Abstract The presented research aims to develop new optimized composition of novel lightweight concrete with a very low bulk density. Low bulk density of developed lightweight concrete is achieved by using a combination of non-traditional lightweight artificial fillers, dispersed fibre reinforcement and pre-generated technical foam. The methodology of lightweight concrete test specimen production, based on technologies commonly applied for the production of lightweight concrete, foam concrete or autoclaved aerated concrete was also designed and verified. Not only the physical and mechanical parameters, but also the thermal insulation properties were verified on the produced test specimens of the developed lightweight concrete.

2016 ◽  
Vol 824 ◽  
pp. 100-107 ◽  
Author(s):  
Alena Struhárová

Bulk density and moisture content are factors that significantly affect the physical properties of autoclaved aerated concrete (AAC) including thermal conductivity and other thermo-technical characteristics. This article shows the results of measurements of compressive strength, capillary absorption, water absorption and porosity of AAC (ash on fluidized fly ash) at different bulk density and also the results of thermal conductivity of AAC at different bulk density and variable moisture content of the material. The thermo-technical properties were measured using the Isomet 2104, a portable measuring device. Acquired results demonstrate dependence of physical properties including thermal conductivity of AAC on bulk density and moisture content. The reliability and accuracy of the method of measuring was also shown.


2018 ◽  
Vol 760 ◽  
pp. 231-236
Author(s):  
Jiri Zach ◽  
Martin Sedlmajer ◽  
Jan Bubenik ◽  
Vitezslav Novak

Along with energy savings for heating and cooling, the demand for thermal insulation materials is increasing and is an attempt to achieve good thermal insulation properties for some of the construction materials. In the field of porous and lightweight concrete, this is e.g. concrete for foundations, concrete for floor constructions or flat roofs. The problem with these concrete is a relatively rapid drop in mechanical properties in reducing bulk density, with using conventional silicate binders, especially in the area below 1000 kg/m3. The paper describes the possibility of using recycled organic fibers in combination with lightweight aggregates based on foam glass for the production of porous and lightweight concrete with a good ratio of mechanical and thermal insulation properties.


2012 ◽  
Vol 531-532 ◽  
pp. 421-424
Author(s):  
Dong Zhou Xia

In engineering practice, the most widely used roof insulation materials are expanded perlite, expanded vermiculite, extruded polystyrene board (XPS), expanded polystyrene board (EPS), foam glass block,rigid polyurethane foam insulation layer, and so on. These products have many advantages, such as light weight, high compressive strength, good integral property, convenient construction. But there are a lot of defects at the same time, such as bad fireproof performance and durability, environmental pollution, and so on. So we need an efficient roofing insulation materials to meet the growing needs of the roofing energy saving, energy saving roofing insulation board system of polyphenylene foam concrete just meet this demand, it has the characteristics of thermal insulation, lightweight and compressive resistance, waterproof and moistureproof, fire durable, and simple structure. Through the application of this new materials in practical engineering, the energy saving roofing insulation board will provide an efficient and practical material for future roof thermal insulation and energy saving.


2020 ◽  
Vol 71 (1) ◽  
pp. 18-26
Author(s):  
Mai Bui Thi Thanh ◽  
Cuong Nguyen Huy ◽  
Quang Ngo Dang ◽  
Tai Dinh Huu

Textile-reinforced concrete (TRC) is a new composite material made of high-strength textiles embedded within fine grained concrete (FGC). The application of TRC leads to the design of thin and slender structures or for repairing and strengthening of existing structural members. Autoclaved aerated concrete (AAC) is an ultra-lightweight concrete, which can be combined with high strength TRC to form some kinds of precast curtain panels in construction. The concept of the TRC-AAC panel is based on the theory of sandwich construction with strong and stiff skins, like TRC layers, bonded to a lightweight AAC core. The resulting hybrid TRC-AAC panel can be used as structural or non-structural member for the housing construction. In this paper, the flexural and shear performance of hybrid TRC-AAC sandwich panels is presented by means of experimental results. The sandwich panels use three layers of different materials: TRC for the tensile layer, AAC for the core material and FGC for the compressive layer. Three different types of glass textile were used as reinforcements in the TRC layers.


2019 ◽  
Vol 23 (3) ◽  
pp. 70-84 ◽  
Author(s):  
Zinta Zimele ◽  
Maris Sinka ◽  
Aleksandrs Korjakins ◽  
Diana Bajare ◽  
Genadijs Sahmenko

Abstract Global warming being increasingly discussed, solutions for reducing emission greenhouse gases become more important in all industry sectors. The total energy consumed in the construction sector contribute up to 1/3 from all greenhouse gases emissions. Large part of it comes from the cement production – 5 % of the total global emissions. The foam concrete is lightweight concrete with good thermal properties and ability to reduce CO2 emissions by reducing the use of cement due to its low density. The aim of this study is to determine impact on the environment with the use of Life Cycle Assessment (LCA) with focus on Global Warming Potential (GWP) for two different compressive strength foam concrete mixtures produced in Latvia by unique intensive mixing technology – turbulence with cavitation effect. Afterwards, the selected foam concrete mixtures are compared with alternative materials with similar compressive strength – aerated concrete and hollow ceramic blocks. The foam concrete mixture having 12.5 MPa compressive strength showed higher CO2 emissions than hallow ceramic block. The majority of CO2 emissions comes from the Portland cement, which is a key element in its composition. On the other hand, the foam concrete mixture having 2.4 MPa compressive strength showed higher CO2 emissions than aerated concrete block. The majority of CO2 emissions are due to foam glass granules, which is the main element contributing to the increased insulation properties of the material. Comparison of each foam concrete with analogue building material by compressive strength shows that the chosen foam concrete mixtures produce greater GWP than alternative materials. This research allows to identify the environmental impacts of different foam concrete mixture components and to improve these mixtures to achieve similar properties with less impact, for example, by replacing foam glass granules with granules made from recycled glass or replacing cement with flay ash, silica fume or recycled glass powder.


2020 ◽  
Vol 992 ◽  
pp. 184-193
Author(s):  
S.M. Aksenova

Review of literature on heat insulation materials shows that despite significant advancements in the developing new construction materials and methods for making them, the search for, and theoretical substantiation of, novel production methods and uses in construction in line with the today’s requirements and norms remains relevant. This paper dwells upon the general patterns in creating a porous structure in a material: foaming, aggregate grouting. It presents a study of how the formula and the technology affect the properties of foam glass concrete; experimental studies described herein are designed mathematically. Emphasis is made on the materials and products made of lightweight concrete based on porous aggregates; the paper also theorizes upon making durable high-quality products and structures from those materials: blocks, stones, partitions, panels, etc.


2019 ◽  
Vol 974 ◽  
pp. 665-671
Author(s):  
Omar Ismael Alhashimi ◽  
AL-Hasnawi Yasser Sami Ghareb

Many of the complex reinforced Autoclaved Aerated Concrete characteristics under shear and flexure are yet to be identified to employ this material advantageously and economically, as it has many advantages of low weight, fire resistance, acoustic and thermal insulation. It is observed in the article that under two-points loading system, diagonal cracks are usually the first cracks to be observed in the deep beam clear span. The diagonal cracks first are developed in relatively deep beams and the flexural cracks are first developed in shallower beam. The principal mode of failure in the deep beams having adequate reinforcement is diagonal tension cracking. The shear failure is a common type for all beams. This indicates a weak the bond strength between lightweight concrete and reinforcing steel. There are many factors affecting the bond strength between the lightweight concrete and reinforcing steel, where the compressive strength plays an important role in bond strength, and the bond strength is increased by increasing the compressive strength. The AAC beams have the potential to be an excellently energy-saving construction material and is believed to emerge as an alternative to traditional reinforced concrete beam in the near future. This is proved by the experimental analysis.


2018 ◽  
Vol 1 (4) ◽  
pp. 823-830
Author(s):  
Farid Saputra ◽  
Mochammad Afifuddin ◽  
Abdullah Abdullah

Abstract: Many areas have inadequate transportation infrastructure. The current technological developments, demanding the construction of easy to move. To accomplish this, a concrete technology is required that can provide lightweight concrete with high strength. Lightweight concrete technology is also urgently needed, to make innovations in the technical work of the new world of construction. For that combination of ferrocement and foam concrete can be a technology solution needed by the people of Indonesia today. The purpose of this study was to obtain information about the behavior of the confined ferrofoam concrete channel block beam I due to the bending load. The observed behavior in this research is the capacity of the beam in accepting the load, the deflection that occurs as well as the resulting crack pattern and the type of collapse. The test specimen to be made is a C-shaped profile with a height variation of 1500 mm, 200 mm, and 300 mm, a width of 100 mm, and a thickness of 30 mm. Test object repeats using D8 (Threaded Steel), and wiremesh layer of 3 layers. Mix design based on specific gravity of 1600 kg/m3 with FAS 0,4 and addition of pozolan equal to 10%. Results obtained 200-3L test object increased capacity by 38% compared to 150-3L test object, 300-3L increased by 97% compared to 150-3L. 200-3L test object decreased deflection by 12% compared to 150-3L, 300-3L test object decreased 61% compared to 150-3L. 200-3L test specimen increased 7% ductility compared to 150-3L test object, 300-3L increased by 76% compared to 150-3L. The overall profile failure is a sliding bending failure. Abstrak: Banyak daerah yang infrastruktur transportasinya belum memadai. Perkembangan teknologi saat ini, menuntut adanya konstruksi yang mudah untuk dipindahkan. Untuk mewujudkan hal ini, dibutuhkan suatu teknologi beton yang bisa menyediakan beton ringan dengan kekuatan yang tinggi. Teknologi beton yang ringan juga sangat dibutuhkan, untuk membuat inovasi dalam teknis pekerjaan baru didunia konstruksi. Untuk itu kombinasi wiremesh dan foam concrete bisa menjadi solusi teknologi yang dibutuhkan oleh masyarakat Indonesia saat ini. Tujuan dari penelitian ini adalah mendapatkan informasi tentang perilaku dari balok profil kanal ferrofoam concrete yang dikonfigurasi I akibat beban lentur. Perilaku yang ditinjau pada penelitian ini berupa kapasitas balok dalam menerima beban, lendutan yang terjadi serta pola retak yang dihasilkan dan jenis keruntuhannya. Benda uji yang akan dibuat adalah profil berbentuk kanal C dengan variasi tinggi masing-masing 1500 mm, 200 mm, dan 300 mm, lebar 100 mm, dan ketebalan 30 mm. Penulangan benda uji menggunakan D8 (Baja Ulir), dan lapisan wiremesh sebanyak 3 lapisan. Mix design berdasarkan berat jenis yaitu 1600 kg/m3 dengan FAS 0,4 dan penambahan pozolan sebesar 10%. Hasil yang didapatkan benda uji 200-3L terjadi peningkatan kapasitas sebesar 38% dibandingkan benda uji 150-3L, 300-3L meningkat sebesar 97% dibanding 150-3L. Benda uji 200-3L terjadi penurunan lendutan sebesar 12% dibandingkan benda uji 150-3L, 300-3L menurun sebesar 61% dibanding 150-3L. Benda uji 200-3L terjadi peningkatan daktilitas sebesar 7% dibandingkan benda uji 150-3L, 300-3L meningkat sebesar 76% dibanding 150-3L. Kegagalan profil yang terjadi secara keseluruhan yaitu kegagalan lentur geser.


2021 ◽  
Vol 1205 (1) ◽  
pp. 012014
Author(s):  
J Zach ◽  
J Bubeník ◽  
M Sedlmajer

Abstract Lightweight concretes are increasingly being used in the construction industry, either for the overall lightweighting of the structure itself, reducing material consumption for construction and thus CO2 emissions, or for specific reasons such as improving the thermal insulation properties of the structure or acoustic properties. Today, lightweight concretes with lightweight expanded aggregates (expanded clay, agloporite) are most commonly used. This paper deals with the production of lightweight concretes lightweighted with foamed glass-based aggregates. Foamed glass is a lightweight material characterised by a very good ratio of thermal insulation and mechanical properties. Foamed glass is made of approximately 90% recycled glass waste (mostly mixed), which cannot be used in any other way, as well as water glass and glycerine. When concrete is lightened with foamed glass, these concretes achieve unique properties while conserving primary aggregate resources, avoiding landfilling of glass waste and efficiently using the waste material to produce lightweight concrete with higher added value. The paper discusses the possibilities of developing lightweight structural concretes using glass foam-based aggregates to achieve higher strength classes while reducing the weight and thermal conductivity of the concrete. As part of the research work, new types of lightweight concrete with a bulk density in the range of 1750–1930 kg/m3 and a thermal conductivity from 0.699 to 0.950 W/(m·K) were developed.


2005 ◽  
Vol 11 (2) ◽  
pp. 121-127
Author(s):  
Erich Raue ◽  
Enrico Tartsch

The fatigue strength of concrete is lower than its static strength. An attempt was made to accelerate the destabilisation process due to microcracking by the application of fatigue loads. The aim of this was to get ready access to information about concrete's sustained loading strength. The fatigue strength of autoclaved aerated concrete (AAC) was observed by applying cyclic loads to unreinforced cylinders. AAC was found to be less sensitive to fatigue loads than lightweight concrete. The fatigue tests were supplemented by tests using sustained loads. It could be assumed that the behaviour under both static and fatigue loads was comparable with that of lightweight and normal concrete. A substantial influence of load duration was found, especially at high load levels.


Sign in / Sign up

Export Citation Format

Share Document