scholarly journals Assessment of integrity and remaining working life of welded steel structures

2021 ◽  
Vol 1208 (1) ◽  
pp. 012011
Author(s):  
Ermin Bajramović ◽  
Fadil Islamović

Abstract Analyzing the period of exploitation of welded steel structures it can be concluded that they are predominantly exposed to the action of variable load. The welded joint as the largest stress concentrator due to the heterogeneity of structural, mechanical and operational properties is a key problem that is further complicated by the possible and realistically probable presence of crack-type faults. The assessment of integrity largely depends on a comprehensive analysis of the welded joint as the most critical place of welded steel structures. Integrity assessment is a necessary obligation for extending the working life, as well as revitalization, as a way to keep the structures in operation, despite the long period of exploitation. This paper presented an analysis of the process of fatigue crack initiation and growth, i.e. an assessment of the of the welded steel structures’ integrity and remaining service life under the influence of variable load.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Boris Fuštar ◽  
Ivan Lukačević ◽  
Darko Dujmović

Due to high stress concentrations, welded joints represent the most common locations of fatigue crack initiation in steel structures that are prone to fatigue. Welding affects material properties by the process of heating, cooling, and combining basic and additional material. Since welding is the primary process of joining elements in steel structures, it is obvious that fatigue assessment during the design and maintenance process becomes inevitable. There are many fatigue assessment methods of welded joints, but their precision remains questionable. This paper represents a review of the most common fatigue assessment methods used for welded steel joints. As a result of this review, areas that require additional research are highlighted.


2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


2014 ◽  
Vol 891-892 ◽  
pp. 1488-1493 ◽  
Author(s):  
José Azevedo ◽  
Virgínia Infante ◽  
Luisa Quintino ◽  
Jorge dos Santos

The development and application of friction stir welding (FSW) technology in steel structures in the shipbuilding industry provide an effective tool of achieving superior joint integrity especially where reliability and damage tolerance are of major concerns. Since the shipbuilding components are inevitably subjected to dynamic or cyclic stresses in services, the fatigue properties of the friction stir welded joints must be properly evaluated to ensure the safety and longevity. This research intends to fulfill a clear knowledge gap that exists nowadays and, as such, it is dedicated to the study of welded steel shipbuilding joints in GL-A36 steel, with 4 mm thick. The fatigue resistance of base material and four plates in as-welded condition (using several different parameters, tools and pre-welding conditions) were investigated. The joints culminate globally with defect-free welds, from which tensile, microhardness, and fatigue analyses were performed. The fatigue tests were carried out with a constant amplitude loading, a stress ratio of R=0.1 and frequency between 100 and 120 Hz. The experimental results show the quality of the welding process applied to steel GL-A36 which is reflected in the mechanical properties of joints tested.


2017 ◽  
Vol 754 ◽  
pp. 268-271 ◽  
Author(s):  
Raffaele Sepe ◽  
M. Laiso ◽  
A. de Luca ◽  
Francesco Caputo

The study proposed within this paper deals with an application of finite element techniques to the thermo-structural analysis of a dissimilar butt-welded joint. Residual stresses induced by the fusion arc-welding of steel joints in power generation plants are a concern to the industry. Nowadays, the application of finite element method appears to be a very efficient method for the prediction and the investigation of the weld-induced residual stresses, nevertheless the detailed modelling of all phenomena involved in such process is still challenging. The structural integrity assessment of welded structures strongly requires a deep investigation of weld-induced residual stresses in order to be compliant with safety requirement of power plant. The longitudinal and transversal residual stresses in dissimilar material butt joints of 8 mm thick for V-groove shape were studied. The developed thermo-mechanical FE model as well as the simulation procedures are detailed and results are discussed. As a result of such work, it has been found out that residual stresses in the two dissimilar plates are characterized by very different magnitudes and distribution.


Sign in / Sign up

Export Citation Format

Share Document