scholarly journals Material characteristics of push-out tests

2021 ◽  
Vol 1209 (1) ◽  
pp. 012065
Author(s):  
P Vanova ◽  
P Orolin ◽  
D Dubecky

Abstract Two types of push-out tests were carried out at the Centre of Research and Innovation in Construction, the Technical University of Košice - one at a composite based on steel continuous shear connector and the second one at the same connector, however made of glass-laminate material. For further research, the material characteristics of the material used needed to be found. In this article, the material tests performed as well as their results are presented.

2021 ◽  
Author(s):  
Patrícia Vaňová ◽  
Vincent Kvočák

<p>Composite bridges with encased steel beams, or nowadays, rather encased steel continuous shear connectors are a welcome option for short span railway or road bridges. With lower construction height and easy construction of prefabricated composite beams it brings a new, complex, solution for replacement of older, overserved bridges, as well as for new tasks. At Technical University of Košice, Faculty of Civil Engineering a new designed of the steel perforated strip was developed. At Laboratory of Excellent Research several experiments for resistance finding were carried together with material tests. In this article the numerical analysis of push-out tests performed is closely described and the shear resistance of finite element model developed in Abaqus/CAE is compared to experimental results.</p>


2021 ◽  
Vol 1209 (1) ◽  
pp. 012064
Author(s):  
P Vanova ◽  
D Dubecky ◽  
V Kvocak

Abstract Continuous shear connectors in a shape of dowels are one of the newer shapes of composite steel-concrete bridges. In this article results of push-out tests of such a dowel with geometry designed at Faculty of Civil Engineering, Technical University of Kosice are presented and compared to the previous research.


2010 ◽  
Vol 163-167 ◽  
pp. 2137-2141
Author(s):  
Lin Xiao ◽  
Shi Zhong Qiang ◽  
Xun Xu

PBL shear connector is a recently developed shear connector for steel-concrete composite structure that making the two element work as a unique piece. In this work, model test has been carried out to investigate the mechanical characteristics of 21 specimens in 7 types of PBL connectors. Combining the model test with finite element simulation, the main work has been done as follows:Load transfer behavior, load-slippage rule and static load mechanical property of PBL have been analyzed. Research on main factors that could influence the mechanical characteristic of PBL has also been conducted. Based on comparison of results of model test and finite element analysis, the feasibility of push-out simulation by nonlinear FEM has been analyzed. Compared to typical push-out tests results in mainland China, recommendations of push-out test of PBL are presented.


2012 ◽  
Vol 18 (1) ◽  
pp. 2096-2103
Author(s):  
Chi-Young Jung ◽  
Seung-Min Park ◽  
Seong-Hwan Won ◽  
Sang-Hyo Kim
Keyword(s):  

2014 ◽  
Vol 14 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sung Bae Kim ◽  
Chan Hwangbo ◽  
Tae Gyu Lee ◽  
Han Sol Cho ◽  
Sang Seup Kim

2021 ◽  
Vol 1203 (3) ◽  
pp. 032080
Author(s):  
Patricia Vanova ◽  
Daniel Dubecky ◽  
Vincent Kvocak

Abstract Composite steel concrete bridges with embedded continuous shear connectors are one of the newer popular options for short span (up to 20 m) bridges. They can be used for both road and railway bridges and due to their low structural height, nowadays, they are also a welcome alternative for bridge reconstructions – the concrete part serves as the bridge deck as well as the main structure. Unfortunately, In the Slovak Republic, no such bridges have been built as of yet (2020). At Technical University of Kosice, Department of Steel and Timber Structures, an extensive research regarding the steel shear connectors have been launched. Its goals are to bring new, easier for construction (due to prefabrication process), more resistant with even lower structural height, and more economical (due to lesser usage of materials and quick construction) geometrical solutions for composite steel concrete bridges as well as to open and popularize this solution for developers in the Slovak Republic. In this article, one of the new types is presented. It has a cross-section in a shape of a trapezoid, with holes in all its sides, except the bottom flange. Their purpose is to create concrete studs and secure full shear transmission with higher shear resistance, but they also serve to create space for transverse reinforcing bars. Its geometrical and material characteristics are closely specified. Results and process of push-out tests performed in Laboratory of Excellent Research onto three specimens are described and compared to results of finite element analysis simulation performed in Abaqus software.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Liu ◽  
Dan Zeng ◽  
Lei Cao ◽  
Naiwei Lu

In order to improve the stiffness and shear bearing capacity of steel-UHPC composite bridge, an innovative shear connector named arc-shaped reinforcement shear connector was proposed and compared with the stud and perforated bar steel plate shear connector using the static push-out test. Considering shear connector diameter, a total of ten push-out specimens for five groups were designed. The results indicated that the failure modes and failure mechanism of the arc-shaped reinforcement shear connectors were significantly different from stud shear connector and perforated bar steel plate. Obvious failure characteristics such as crack and reinforcement were not observed for the arc-shaped reinforcement specimens except for fine cracks on the top of one specimen, but these were observed for the others two types of shear connector. The relative slip value of arc-shaped reinforcement shear connector at the maximum load was the smallest and less than 1 mm in three types of shear connectors. The stiffness and shear bearing capacity of arc-shaped reinforcement were higher than those of stud and perforated bar steel plate under the same diameter. Increasing arc-shaped reinforcement diameter could improve significantly static behavior of shear connector. When the diameter of arc-shape reinforcement was increased from 8 mm to 12 mm, the ductility factor, stiffness, and shear bearing capacity of arc-shaped reinforcement shear connector were improved by 174.32%, 214.76%, and 54.2%, respectively. A calculation method of shear bearing capacity was proposed by the least square method and multiple regression analysis and agreed well with the test result.


Author(s):  
Nguyen Minh Hai ◽  
Nakajima Akinori

In steel-concrete hybrid members and structures, to ensure required stress transmission between the steel and the concrete members, shear connectors are generally arranged between the two. A perfobond strip is widely used as the shear connector in various hybrid structures, and when applying the perfobond strip it is important to confirm its shear resistance. In this study, the shear resistance of the perfobond strip without the penetrating rebar is investigated experimentally by employing a simple push-out specimen. As a result, a design formula is proposed for evaluating the shear resistance of the perfobond strip, taking into account the dimensions of concrete block and the thickness of the perfobond plate, as well as the perforation diameter, and the concrete compressive strength.


2007 ◽  
Vol 334-335 ◽  
pp. 381-384 ◽  
Author(s):  
Jeong Hun Nam ◽  
Soon Jong Yoon ◽  
Dong Min Ok ◽  
Sun Kyu Cho

In recent years, the FRP-concrete composite bridge deck system has been introduced because of its light-weight and durability. The FRP-concrete composite bridge deck is composed of FRP module and concrete, and they are connected with shear connectors. In order to insure the composite action between FRP module and concrete, appropriate types of shear connector need to be installed. In this study, new type of FRP shear connector was suggested and the experimental investigations are conducted based on the studies of Perfobond. In the experimental study, the push-out test was conducted and the load carrying mechanism was analyzed including the friction effect of sand coating. Considering the load carrying mechanism of perforated shear connector under shear force, the empirical equation for the prediction of shear strength of perforated FRP shear connector was suggested.


2018 ◽  
Vol 163 ◽  
pp. 137-152 ◽  
Author(s):  
Emad Hosseinpour ◽  
Shahrizan Baharom ◽  
Wan Hamidon W. Badaruzzaman ◽  
Ahmed W. Al Zand

Sign in / Sign up

Export Citation Format

Share Document