scholarly journals A mathematical model for the virtual simulator of the power unit electrical part

2022 ◽  
Vol 1216 (1) ◽  
pp. 012009
Author(s):  
P Baran ◽  
Y Varetsky ◽  
V Kidyba ◽  
Y Pryshliak

Abstract The mathematical model is developed for a virtual training system (simulator) of the power unit electrical part operators of a thermal (nuclear) power plant. The model is used to simulating the main operating conditions of the power unit electrical part: generator idling, generator synchronization with the power system, excitation shifting from the main unit to the backup one and vice versa, switching in the power unit auxiliary system, and others. Furthermore, it has been implemented modelling some probable emergency conditions within a power plant: incomplete phase switching, damage to standard power unit equipment, synchronous oscillations, asynchronous mode, etc. The model of the power unit electrical part consists of two interacting software units: models of power equipment (turbine, generator with excitation systems, auxiliary system) and models of its control systems, automation, relay protection and signalling. The models are represented by the corresponding algebraic-differential equations that provide real-time mapping power unit processes at the operator’s request. The developed model uses optimal solving algebraic-differential equations to ensure the virtual process behaviour in real-time. In particular, the implicit Euler method is used to solve differential equations, which is stable when simulating processes in significant disturbances, such as accidental disconnection of the unit from the power system, tripping and energizing loads, generator excitation loss, etc.

2021 ◽  
Vol 25 (2) ◽  
pp. 183-195
Author(s):  
F. V. Zabuga ◽  
V. E. Alekseyuk

The work aims to study the effect of changes in the drain scheme of the low-pressure regeneration on the energy and economic efficiency of the CHP plant-10 power unit No 5 of “Baikal Energy Company” LLC. In this study, we used a mathematical model of the power unit adjusted to the measurements results. The mathematical modelling of the power unit was performed using the “Computer-assisted programming system” application package. The created matematical model of the heat and power plant was tailored to the current state of the study object according to the three-stage identification procedure of the mathematical model parameters. We proposed a cycle arrangement under which three streams of the low-pressure drainages were redirected to the pump suction of the low-pressure heater. The improved mathematical model of the power unit allows the calculation of the parameters of both the existing and proposed cycle arrangements. According to the calculations, the temperature difference between the main condensate after the low-pressure heater 1 and the investigated drains after mixing is minimal and amounts to 3.2 °C. The suggested modernisation increases the energy efficiency of the power unit by 0.007% under the nominal operating conditions of the existing and proposed thermal circuit. In addition, the specific standard fuel consumption for electric generation is reduced by 0.052 g.s.s.f./kWh. The operating costs to implement the proposed engineering solutions amounted to 34,191 roubles. Considering the annual power plant extensive consumption factor, the payback period of the proposed modernisation will be 5.5 months. The savings for the first operation year are estimated at 18,423 roubles, based on the rate of return and depreciation expenses. The proposed approach combines mathematical modelling of operating power plants with a technique of increasing the efficiency of technical decision-making. The proposed versatile approach can be used for the modernisation of CHPs and other plants.


2021 ◽  
Vol 289 ◽  
pp. 02002
Author(s):  
Fedor Zabuga ◽  
Vitalii Alekseiuk

The work aims to study the effect of changes in the drain scheme of the low-pressure regeneration on the energy and economic efficiency of the CHP plant-10 power unit No 5 of “Baikal Energy Company” LLC. In this study, we used a mathematical model of the power unit adjusted to the measurements results. The mathematical modelling of the power unit was performed using the “Computer-assisted programming system” application package. The created mathematical model of the heat and power plant was tailored to the current state of the study object according to the threestage identification procedure of the mathematical model parameters. We proposed a cycle arrangement under which three streams of the low-pressure drainages were redirected to the pump suction of the low-pressure heater. The improved mathematical model of the power unit allows the calculation of the parameters of both the existing and proposed cycle arrangements. According to the calculations, the temperature difference between the main condensate after the low-pressure heater 1 and the investigated drains after mixing is minimal and amounts to 3.2 °C. The suggested modernisation increases the energy efficiency of the power unit by 0.007% under the nominal operating conditions of the existing and proposed thermal circuit. In addition, the specific standard fuel consumption for electric generation is reduced by 0.052 gram of conventional fuel / kW·h. The operating costs to implement the proposed engineering solutions amounted to 34191 roubles. Considering the annual power plant extensive consumption factor, the payback period of the proposed modernisation will be 5.5 months. The savings for the first operation year are estimated at 18423 roubles, based on the rate of return and depreciation expenses. The proposed approach combines mathematical modelling of operating power plants with a technique of increasing the efficiency of technical decision-making. The proposed versatile approach can be used for the modernisation of CHPs and other plants.


Author(s):  
G. Hariharan ◽  
B. Kosanovic

The ability of modern power plant data acquisition systems to provide a continuous real-time data feed can be exploited to carry out interesting research studies. In the first part of this study, real-time data from a power plant is used to carry out a comprehensive heat balance calculation. The calculation involves application of the first law of thermodynamics to each powerhouse component. Stoichiometric combustion principles are applied to calculate emissions from fossil fuel consuming components. Exergy analysis is carried out for all components by the combined application of the first and second laws of thermodynamics. In the second part of this study, techniques from the field of System Identification and Linear Programming are brought together in finding thermoeconomically optimum plant operating conditions one step ahead in time. This is done by first using autoregressive models to make short-term predictions of plant inputs and outputs. Then, parameter estimation using recursive least squares is used to determine the relations between the predicted inputs and outputs. The estimated parameters are used in setting up a linear programming problem which is solved using the simplex method. The end result is knowledge of thermoeconomically optimum plant inputs and outputs one step ahead in time.


2021 ◽  
Vol 2021 (1) ◽  
pp. 29-37
Author(s):  
T.P. Nechaieva ◽  

The use of large amounts of existing baseload NPPs capacities with a significant increase in renewable generation in the mathematical model of optimal dispatching of generating capacities of Ukraine’s power system leads to a significant surplus of electricity during peak power generation at solar PV’s, which necessitates additional sources of flexibility of the power system, such as battery electricity storage systems. The projects of new advanced nuclear power units provide for their use in flexible load modes with a maximum unloading of up to 50% of the rated capacity. Advanced NPP power units with small modular reactors are designed for even greater more maneuverable operation with possible unloading of up to 20% of rated capacity. The article presents approaches to modeling the use of NPP power units in variable load modes in the mathematical model of the optimal daily load schedule dispatching of Integrated Power System of Ukraine. The first approach is to model the operation of NPP power units similar to modeling the participation of cycling TPP units in covering the daily electrical load profile of the power system, in particular, changes in generation power in the range from minimum to nominal load levels, load rate. The second approach is to determination for each nuclear power unit of variants of modes of their hourly loading, the choice of one of which is made as a result of optimization. The modeling results showed that the choice of optimal flexible loading modes of new nuclear power units allows to provide the load balance of the power system almost completely with available capacities, including cycling TPP units, and the use of pump-storage generating units to transfer excess PV generation at peak hours of electricity consumption, which avoids the use of battery storage systems. Keywords: mathematical model of dispatching, operational mode, nuclear power unit, daily electric load profile, power system


Author(s):  
E. A. Bekirov ◽  
D. V. Karkach ◽  
E. R. Murtazaev

One of the urgent tasks of using renewable energy sources is the use of a power unit for converting the energy of sea waves into electrical energy. An important element of the design process of a wave power plant is to carry out mathematical modeling of its operation under various operating conditions to determine the output power and conduct a feasibility study. The process of converting the energy of sea waves into electrical energy for the proposed type of wave power plant is based on forced vertical oscillations of the power unit's float caused by sea waves. The mathematical model of the behavior of the float connected to the generator is based on the integro-differential equation of forced oscillations and makes it possible to determine the dynamics of its oscillations and draw a conclusion about the power taken from the generator connected to the float. The article presents the calculations of the dynamics of the float connected to the generator, the wave equation, the integro-differential equation of the float oscillations, the modeling of the incident wave and the float power unit is carried out. Data on the length, period and height of waves in the Black Sea off the coast of Crimea are used according to official forecasts and observations.


Author(s):  
Rauf Ismail Mustafayev ◽  
Laman Hasan Hasanova

Double Fed Asynchronous Machines in (DFAM) recent years have found wide application both as generators mainly in renewable energy sources (wind power, small hydropower), and as a motors embedded in various electric drives. In order to study the static and dynamic modes of operation of these machines as one of the most effective methods - the method of mathematical modeling is widely used. It was found that the algebraic-differential equations that make up the mathematical model of double fed induction machine are expediently represented in the d and q axes rotating with the rotor speed of the machine. Particularly this form allows relatively simple reproduction of control coordinates - amplitude and frequency converted to the rotor winding voltage. This mathematical model is based on the well-known Park equations for synchronous machines. It is proposed to simplify the algebraic-differential equations of the double-fed induction machine by reducing the transformer emf, the slip emf and the voltage drop on the stator winding of the machine. The results of calculations for the complete equations of the machine having the 6th order and on the simplified equations having the 4th order showed that the error in determining the regime parameters of the machine in steady-state conditions is in the range 0-7%, i.e. does not exceed 7 percent. The error in dynamic modes is also within acceptable limits. In the dynamics of the change in the regime parameters of DFIM with a sharp change in the disturbing influences slightly differ from each other, and with a sharp change in the control actions they make up 20-30%. This allows to recommend the proposed simplification for engineering calculations, especially when these machines operate in a group or in parallel with other machines and components of power systems. 


2020 ◽  
Vol 11 (11) ◽  
pp. 28-37
Author(s):  
Aleksey A. SUVOROV ◽  
◽  
Alexander S. GUSEV ◽  
Mikhail V. ANDREEV ◽  
Alisher B. ASKAROV ◽  
...  

The transient stability is the main condition for reliability and survivability operation of electric power system. The transient stability analysis is an extremely complex problem. It uses the results of numerical integration of differential equations that form a mathematical model of the power system. However, the mathematical model of a large-scale power system contains a rigid nonlinear system of extremely high-order differential equations. Such system cannot be solved analytically. The simplifications and limitations are used for improving the conditionality of the power system mathematical model in time-domain simulation. It decreases the reliability and accuracy of the simulation results. In this regard, it becomes necessary to validate them. The most reliable way of validation is to compare simulation results with field data. However, it is not always possible to receive the necessary amount of field data due to many power system states and a large amount of disturbances leading to instability. The paper proposes an alternative approach for validation: using an adequate model standard instead of field data. The prototype of Hybrid Real Time Power System Simulator having the necessary properties and capabilities has been used as the reference model. The appropriate sequence of actions has been developed for validation. The adequacy of proposed approach is illustrated by the fragments of the experimental studies


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2124 ◽  
Author(s):  
Li Han ◽  
Rongchang Zhang ◽  
Xuesong Wang ◽  
Yu Dong

This paper looks at the ability to cope with the uncertainty of wind power and reduce the impact of wind power forecast error (WPFE) on the operation and dispatch of power system. Therefore, several factors which are related to WPFE will be studied. By statistical analysis of the historical data, an indicator of real-time error based on these factors is obtained to estimate WPFE. Based on the real-time estimation of WPFE, a multi-time scale rolling dispatch model for wind/storage power system is established. In the real-time error compensation section of this model, the previous dispatch plan of thermal power unit is revised according to the estimation of WPFE. As the regulating capacity of thermal power unit within a short time period is limited, the estimation of WPFE is further compensated by using battery energy storage system. This can not only decrease the risk caused by the wind power uncertainty and lessen wind spillage, but also reduce the total cost. Thereby providing a new method to describe and model wind power uncertainty, and providing economic, safe and energy-saving dispatch plan for power system. The analysis in case study verifies the effectiveness of the proposed model.


2012 ◽  
Vol 433-440 ◽  
pp. 2850-2855
Author(s):  
Lei Shi ◽  
Xiang Ning Xiao

In this paper, power system electromagnetic and electromechanical transient hybrid real-time simulation technology is expounded in details, which has advantages of the electromagnetic transient simulation program and electromechanical ones. The more details needed to analyze the dynamic characteristics of power systems are provided by this hybrid simulation technology, and the scale of power system simulated is not limited in the hybrid simulation program. The hybrid simulation program is applied to analyze the power system subsynchronous oscillation problem occurred in a power plant with 4 turbine generators located in the northwestern China. According to the simulation results, it is clear that the stability of generators is threatened by the subsynchronous oscillations caused by capacitor series compensation in the transmission line connecting the power plant and the load center system. In meantime, the effectiveness of the countermeasure is validated simultaneously by the hybrid simulation results.


2017 ◽  
Vol 3 (2) ◽  
pp. 7
Author(s):  
Pragya Singh ◽  
Aayushi Priya

Economic Load Dispatch, ELD can be defined as the way of allocating the load level to the generators of the power plant in such a way that the total demand would be supplied in a most economic manner and completely. In a practical power system, the power plants are not located at the same distance from the centre of loads and their fuel costs are different. Also, under normal operating conditions, the generation capacity is more than the total load demand and losses. Thus, there are many options for scheduling generation. In an interconnected power system, the objective is to find the real and reactive power scheduling of each power plant in such a way as to minimize the operating cost. This means that the generator‟s real and reactive powers are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost. This is called optimal power flow problem. In this paper, Economic Load Dispatch (ELD) of real power generation is considered. Economic Load Dispatch (ELD) is the scheduling of generators to minimize total operating cost of generator units subjected to equality constraint of power balance within the minimum and maximum operating limits of the generating units. This paper gives a survey of research work covering the concept of economic load dispatch. Economic load dispatch gives the best saving in cost for any power generation plant operation in which the methodology can be applied by various means from conventional to the advanced. In the past years up to 90s, the conventional techniques were used to make this happen but in the past decades AI techniques have fulfilled the requirements with satisfactory results that are being reviewed.


Sign in / Sign up

Export Citation Format

Share Document