scholarly journals Characterisation of plastic zones around crack-tips in pure single-crystal tungsten using electron backscatter diffraction

Author(s):  
J D Murphy ◽  
A J Wilkinson ◽  
S G Roberts
2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Adam Morawiec

There is a growing interest in ab initio indexing of electron backscatter diffraction (EBSD) patterns. The methods of solving the problem are presented as innovative. The purpose of this note is to point out that ab initio EBSD indexing belongs to the field of indexing single-crystal diffraction data, and it is solved on the same principles as indexing of patterns of other types. It is shown that reasonably accurate EBSD-based data can be indexed by programs designed for X-ray data.


2021 ◽  
pp. 110-128
Author(s):  
David Rickard

Single crystal X-ray diffraction analyses of even the most perfectly organized framboids show ring patterns indicative of randomly oriented particles. Therefore, framboids are not mesocrystals or extreme skeletal varieties of single crystals. Electron backscatter diffraction shows that the microcrystals within a framboid are not crystallographically aligned. Around half of the microcrystals in organized framboids have crystallographic orientations rotated 90º. The results of single crystal XRD and framboid EBSD studies clearly show that the microcrystals are self-organized rather than being the result of a crystallographic template or preexisting structural control. The pre-formed framboid microcrystals which are initially randomly organized throughout the framboid volume then, in some cases, begin to wholly or partly self-order. This is effected by rotation of the microcrystals until an ordered array is produced. The consequence of this rotation must be that the microcrystals are initially packed loosely enough for rotation to occur. The processes involved in the rotation could include forces intrinsic to the microcrystals themselves, such as surface forces, or forces imposed from outside the framboid, such as Brownian motion. The fundamental driving force for microcrystal rotation and the development of organized microcrystal arrays in framboids is entropy maximization.


2008 ◽  
Vol 72 (6) ◽  
pp. 1181-1199 ◽  
Author(s):  
C. D. Barrie ◽  
A. P. Boyle ◽  
S. F. Cox ◽  
D. J. Prior

AbstractA suite of experimentally deformed single-crystal pyrite samples has been investigated using electron backscatter diffraction (EBSD). Single crystals were loaded parallel to <100> or <110> and deformed at a strain rate of 10-5s-1, confining pressure of 300 MPa and temperatures of 600°C and 700°C. Although geometrically (Schmid factor) the {001}<100> slip system should not be activated in <100> loaded samples, lattice rotation and boundary trace analyses of the distorted crystals indicate this slip system is easier to justify. Determination of 75 MPa as the critical resolved shear stress (CRSS) for {001}<100> activation, in the <110> loaded crystals, suggests a crystal misalignment of ~5—15° in the <100> loaded crystals would be sufficient to activate the {001}<100> slip system. Therefore, {001}<100> is considered the dominant slip system in all of the single-crystal pyrite samples studied. Slip-system analysis of the experimentally deformed polycrystalline pyrite aggregates is consistent with the single-crystal findings, with the exception that {001}<11̄> also appears to be important, although less common than the {001}<100> slip system. The lack of crystal preferred orientation (CPO) development in the polycrystalline pyrite aggregates can be accounted for by the presence of two independent symmetrically equivalent slip systems more than satisfying the von Mises criterion.


2008 ◽  
Vol 92 (7) ◽  
pp. 071905 ◽  
Author(s):  
R. Maaß ◽  
S. Van Petegem ◽  
D. Grolimund ◽  
H. Van Swygenhoven ◽  
D. Kiener ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1717
Author(s):  
Xintao Zhu ◽  
Fu Wang ◽  
Tobias Wittenzellner ◽  
Shuaipeng Zhang ◽  
Susanne Hemes ◽  
...  

To figure out the impact of the parameters of a starter block (the diameter D and height H) on grain selection and the selecting mechanism, a spiral selector was measured with optical microscopy (OM) and electron backscatter diffraction (EBSD) during the solidification of Ni-based single crystal (SX) superalloys. In this experiment, starter blocks with diameters of 8 mm, 10 mm, 15 mm, and 30 mm and a height of 30 mm were designed to find the best parameters. Recommendations for optimizing starter block geometry are provided.


2001 ◽  
Vol 16 (3) ◽  
pp. 694-700 ◽  
Author(s):  
Ajmal Khan ◽  
Derrick T. Carpenter ◽  
Adam M. Scotch ◽  
Helen M. Chan ◽  
Martin P. Harmer

Electron backscatter diffraction (EBSD) has been applied to characterize Pb(Mg1/3Nb2/3)O3–35 mol%PbTiO3 single crystals grown by the seeded polycrystal conversion method. Macroscopically triangular crystal growth fronts were shown to each be associated with discrete crystals that originated from slightly misoriented segments of an initially cracked single-crystal seed plate. Various types of crystal imperfections, including voids, second-phase regions, and polycrystalline matrix grains trapped within the grown region, were readily identified and distinguished from one another using EBSD. Further, it was shown that trapped matrix grains in the grown region had consistently small misorientations with respect to the grown single crystal and this may be qualitatively explained by a simple boundary energetics argument. The significance of the trapped grains is discussed.


Sign in / Sign up

Export Citation Format

Share Document