scholarly journals Application of Tailor Rolled Blank in A-pillar stiffener of a certain automotive body

Author(s):  
Huawei Zhang ◽  
Jialu Wu
2015 ◽  
Vol 84 (7) ◽  
pp. 514-518
Author(s):  
Ryuji HAMADA ◽  
Hiroki FUJIMOTO ◽  
Masahiro OGAWA ◽  
Naoaki SHIMADA

2020 ◽  
Vol 39 (1) ◽  
pp. 317-327
Author(s):  
Vivek D. Kalyankar ◽  
Gautam P. Chudasama

AbstractIn this article, the influence of electrode tip diameter is investigated for spot welded duplex stainless steel (DSS). Electrode tip diameter and welding current are considered as the major influencing parameters and their values are varied within the feasible range, suitable for 0.8 mm thick sheet, whereas other important parameters such as welding time and electrode force are kept constant. DSS with the chosen thickness range is now becoming a useful material in automotive body-in-white applications and in future it will become one of the key materials replacing the existing materials and hence research outcome of the present work may be beneficial from application view point. In this work, the spot welding quality is inspected through metallurgical aspects (microstructure and microhardness), physical aspects (nugget diameter and electrode indentation), mechanical performance (tensile shear strength [TSS]) and failure mode. The obtained result shows that smaller electrode tip diameter limits nugget diameter due to expulsion phenomena and increases electrode indentation due to higher current intensity. TSS decreases with increase in electrode tip diameter for the same welding current but maximum TSS obtained for particular electrode tip diameter increases with increase in electrode tip diameter up to a specific limit and then it remains constant.


2012 ◽  
Vol 490-495 ◽  
pp. 1451-1455
Author(s):  
Guang Yao Zhao ◽  
Yi Feng Zhao ◽  
Chuan Yin Tang ◽  
Zhi Yuan Du

Aimed at SUV-type vehicle, simulation and analysis of pressure resistance experiments on the body of automobile has been presented in the paper, according to the vehicle safety regulations and standards of FMVSS216. A limited SUV vehicle model is created; simulation is obtained with the help of software LS-DYNA, based on the principle of finite element analysis method. Assessment of pressure resistance and safety of the automobile has been presented, from the aspect of the deformation of body, the energy absorption of the vehicle and components, and the pressure on the body, etc. By rational improving of the original design of body structure, the reasonable distribution of pressure absorbability of the body of the SUV-type automobile is achieved. The effect of the overall energy absorption of the body is fully exerted, and then the safety of the driver and the passenger in a rollover accident is improved. Research methods and conclusions of this paper provide useful ways and references to the research of the safety of vehicle rollover and design of rationality of body energy absorption


2004 ◽  
Author(s):  
Yasuaki Tsurumi ◽  
Hidekazu Nishigaki ◽  
Toshiaki Nakagawa ◽  
Tatsuyuki Amago ◽  
Katsuya Furusu ◽  
...  

2010 ◽  
Vol 36 ◽  
pp. 293-296
Author(s):  
Yoshio Kurosawa ◽  
Takao Yamaguchi

We have developed a technique for estimating vibrations of an automotive body structures with viscoelastic damping materials using large-scale finite element (FE) model, which will enable us to grasp and to reduce high-frequency road noise(200~500Hz). In the new technique, first order solutions for modal loss factors are derived applying asymptotic method. This method saves calculation time to estimate modal damping as a practical tool in the design stages of the body structures. Frequency responses were calculated using this technique and the results almost agreed with the test results. This technique can show the effect of the viscoelastic damping materials on the automotive body panels, and it enables the more efficient layout of the viscoelastic damping materials. Further, we clarified damping properties of the automotive body structures under coupled vibration between frames and panels with the viscoelastic damping materials.


2011 ◽  
Vol 702-703 ◽  
pp. 68-75 ◽  
Author(s):  
Hirofumi Inoue

In order to develop favorable textures for deep drawing of Al-Mg-Si and Mg-Al-Zn alloys that are promising as automotive body panels, we have adopted the symmetric/asymmetric combination rolling (SACR) process consisting of conventional symmetric rolling and subsequent asymmetric rolling at relatively low reduction. The combination of symmetric cold rolling and asymmetric warm rolling for AA6022 sheets leads to the formation of “TD-rotated β-fiber texture”, resulting in the evolution of {111} recrystallization texture after solution treatment at a high temperature. The SACR processed and solution-treated sheets show a high average r-value with small in-plane anisotropy, and consequently the limiting drawing ratio increases significantly, compared to that of the cold-rolled and solution-treated sheets. In the case of AZ31 magnesium alloy, the SACR process by hot rolling causes the formation of a unique texture, which shows two (0001) poles with tilt angles of 0 and −40 degrees from the normal direction (ND) toward the rolling direction (RD). In addition, subsequent annealing weakens intensity of the double-peak texture, so that the drawability is greatly improved in comparison with that of the conventional warm-rolled sheets with a strong basal texture. At the same time, yield strength decreases to some extent, but the SACR processed and annealed sheets exhibit a good balance of strength and formability due to a mixed texture with basal and tilt components.


2007 ◽  
Vol 539-543 ◽  
pp. 423-428 ◽  
Author(s):  
S.F. Golovashchenko

Small pieces of metal are generated during trimming of automotive body panels. Commonly referred to as slivers, these pieces can be imprinted into the surface of stamped panels. This may require metalfinish of every stamped exterior panel. The objective of the paper is to study the influence of trimming conditions on quality of trimmed surface and to modify the trimming process to eliminate slivers and burrs from the trimmed surface. Suggested solution includes two measures: 1) building an elastic support of the offal eliminating bending of the area of the blank being trimmed off; 2) creating the preference of crack propagation from the lower shearing edge by machining a small radius on the upper shearing edge.


Sign in / Sign up

Export Citation Format

Share Document