Estimation of corrosive environment of automotive body by analysis of rust composition.

Author(s):  
Naoki SHIBATA ◽  
Hitoshi KUNIMI
2019 ◽  
Author(s):  
Chem Int

The corrosion inhibition characteristics of two medicinal molecules phenylalanine and rutin on mild steel in 1.0M Hydrochloric acid were evaluated using gravimetric method. Corrosion inhibition efficiency of 83.78 and 90.40 % was obtained respectively after seven days. However, phenylalanine showed weak accumulative higher corrosion inhibition efficiency. The presence of both molecules in the corrosive environment reduced the corrosion rate constant and increased the material half-life. Thermodynamic data calculated suggests a spontaneous adsorption of the molecules on the mild steel’s surface.


2014 ◽  
Vol 51 (6) ◽  
pp. 426-450 ◽  
Author(s):  
Bo Wang ◽  
Zheng Li ◽  
Chuan He ◽  
Pei Zhu ◽  
Fuhai Li

2015 ◽  
Vol 84 (7) ◽  
pp. 514-518
Author(s):  
Ryuji HAMADA ◽  
Hiroki FUJIMOTO ◽  
Masahiro OGAWA ◽  
Naoaki SHIMADA

Author(s):  
Karumbu Meyyappan ◽  
Alan McAllister ◽  
Vasu Vasudevan ◽  
Anil Kurella ◽  
Balu Pathangey ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Xiaozhen Li ◽  
Hui Wang ◽  
Jianmin Wang ◽  
Junzhe Liu

In this work, the microstructure characteristics of corrosion products of reinforcement under a corrosive environment with chloride, carbonation and the combination of chloride-carbonization were studied by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy/energy spectroscopy (SEM-EDX). The results indicate that the outside of the passivation film reacts with the cement slurry to produce Fe–SiO4 in all three corrosive environments. The inner side is not completely corroded. The morphology of the corrosion is different in the three environments. In a chloride environment, corrosion products have obvious cracks, and the local layered structure is dense. In a carbonation environment, the surface of the steel corrosion shows a uniform granular structure and loose texture. With the combination of chloride and combination, the surface of the structural layer of steel corrosion was uneven and accompanied by protrusions, cracking and spalling occurred. The composition of the corrosion substances in the three corrosion environments are mainly composed of FeO, Fe3O4, Fe2O3 and Fe–SiO4. The content of iron oxide increases from a chloride salt, carbonization to the composite environment, indicating that the corrosion degree intensifies successively.


2020 ◽  
Vol 39 (1) ◽  
pp. 317-327
Author(s):  
Vivek D. Kalyankar ◽  
Gautam P. Chudasama

AbstractIn this article, the influence of electrode tip diameter is investigated for spot welded duplex stainless steel (DSS). Electrode tip diameter and welding current are considered as the major influencing parameters and their values are varied within the feasible range, suitable for 0.8 mm thick sheet, whereas other important parameters such as welding time and electrode force are kept constant. DSS with the chosen thickness range is now becoming a useful material in automotive body-in-white applications and in future it will become one of the key materials replacing the existing materials and hence research outcome of the present work may be beneficial from application view point. In this work, the spot welding quality is inspected through metallurgical aspects (microstructure and microhardness), physical aspects (nugget diameter and electrode indentation), mechanical performance (tensile shear strength [TSS]) and failure mode. The obtained result shows that smaller electrode tip diameter limits nugget diameter due to expulsion phenomena and increases electrode indentation due to higher current intensity. TSS decreases with increase in electrode tip diameter for the same welding current but maximum TSS obtained for particular electrode tip diameter increases with increase in electrode tip diameter up to a specific limit and then it remains constant.


2012 ◽  
Vol 490-495 ◽  
pp. 1451-1455
Author(s):  
Guang Yao Zhao ◽  
Yi Feng Zhao ◽  
Chuan Yin Tang ◽  
Zhi Yuan Du

Aimed at SUV-type vehicle, simulation and analysis of pressure resistance experiments on the body of automobile has been presented in the paper, according to the vehicle safety regulations and standards of FMVSS216. A limited SUV vehicle model is created; simulation is obtained with the help of software LS-DYNA, based on the principle of finite element analysis method. Assessment of pressure resistance and safety of the automobile has been presented, from the aspect of the deformation of body, the energy absorption of the vehicle and components, and the pressure on the body, etc. By rational improving of the original design of body structure, the reasonable distribution of pressure absorbability of the body of the SUV-type automobile is achieved. The effect of the overall energy absorption of the body is fully exerted, and then the safety of the driver and the passenger in a rollover accident is improved. Research methods and conclusions of this paper provide useful ways and references to the research of the safety of vehicle rollover and design of rationality of body energy absorption


2004 ◽  
Author(s):  
Yasuaki Tsurumi ◽  
Hidekazu Nishigaki ◽  
Toshiaki Nakagawa ◽  
Tatsuyuki Amago ◽  
Katsuya Furusu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document