scholarly journals A Miniaturized Co-planar Waveguide End-fire Antenna Based on Spoof Surface Plasmon Poalritons Excited Along Metal-substrate Interface

Author(s):  
He Wang ◽  
Yipu Guo ◽  
Xinmin Fu ◽  
Yao Jing
2016 ◽  
Vol 28 (21) ◽  
pp. 2395-2398 ◽  
Author(s):  
Haifeng Hu ◽  
Xie Zeng ◽  
Yong Zhao ◽  
Jin Li ◽  
Haomin Song ◽  
...  

2018 ◽  
Vol 49 ◽  
pp. 249-259 ◽  
Author(s):  
Zhengwei Li ◽  
Zhiwu Xu ◽  
Lin Ma ◽  
Sheng Wang ◽  
Xuesong Liu ◽  
...  

Author(s):  
Jiawei Yang ◽  
Sarina Bao ◽  
Shahid Akhtar ◽  
Ping Shen ◽  
Yanjun Li

AbstractIt is well known that grain refiner additions in aluminum melts significantly reduce the filtration efficiency of ceramic foam filters (CFF). However, the mechanism remains unclear. In this work, the influence of grain refiners on the wettability of alumina substrate by aluminum melt was studied by both conventional sessile drop and improved sessile drop methods at different temperatures and vacuums. Commercial purity aluminum (CP-Al) and grain refiner master alloys Al-3Ti-1B, Al-5Ti-1B, Al-3Ti-0.15C were used. It is found that master alloy melts wet alumina substrate better than CP-Al. Generally, a lower temperature or lower vacuum results in a higher contact angle. The roles of grain refiner particles in improving the wettability were studied by analyzing the solidification structure of post wetting-test droplets using SEM. Strong sedimentation of grain refiner particles at the metal-substrate interface was observed, which is attributed to the higher density of grain refiner particles compared to the Al melt. Meanwhile, a large fraction of grain refiner particles agglomerates at the oxide skin of the aluminum droplets, showing a strong adhesion between the particles and oxide skin. Such adhering of grain refiner particles is proposed to enhance the rupture of the original oxide skin of the droplets and slow down the reoxidation process at the surface layer. Both adherence of grain refiner particles to surface oxide skin and sedimentation of particles at the metal-substrate interface are responsible for the wetting improvement.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1784 ◽  
Author(s):  
Junior Asencios ◽  
Ramiro Moro ◽  
Clemente Luyo ◽  
Arturo Talledo

High sensitivity biosensors based on the coupling of surface plasmon polaritons on titanium nitride (TiN) and a planar waveguide mode were built; they were proved by sensing three different media: air, water and dried egg white; sensors described here could be useful for sensing materials with a refractive index between 1.0 and 1.6; in particular, materials of biological interest with a refractive index in the range 1.3–1.6, like those containing biotin and/or streptavidin. They were built by depositing Nb2O5/SiO2/TiN multilayer structures on the flat surface of D-shaped sapphire prisms by using the dc magnetron sputtering technique. Attenuated total reflection (ATR) experiments in the Kretschmann configuration were accomplished for the air/TiN/Prism and S/Nb2O5/SiO2/TiN/Prism structures, S being the sample or sensing medium. ATR spectra for plasmons at the TiN/air interface showed a broad absorption band for angles of incidence between 36 and 85°, with full width at half maximum (FWHM) of approximately 40°. For the S/Nb2O5/SiO2/TiN/Prism structures, ATR spectra showed a sharp reflectivity peak, within the broad plasmonic absorption band, which was associated with Fano resonances. The angular position and FWHM of the Fano resonances strongly depend on the refractive index of the sensing medium. ATR spectra were fitted by using the transfer-matrix method. Additionally, we found that angular sensitivity and figure of merit increase with increasing the refractive index of the sensing medium.


Sign in / Sign up

Export Citation Format

Share Document