scholarly journals The influence of the melt cooling rate on shrinkage behaviour during solidification of aluminum alloys

Author(s):  
V B Deev ◽  
E S Prusov ◽  
M Shunqi ◽  
E H Ri ◽  
T A Bazlova ◽  
...  
2020 ◽  
Vol 993 ◽  
pp. 203-207
Author(s):  
Wei Min Ren ◽  
Zi Yong Chen ◽  
Zhi Lei Xiang ◽  
Li Hua Chai

Refining grain plays an important role in improving the mechanical properties of aluminum alloys. However, the conventional casting method with a slow cooling rate can be easy to cause coarseness of the microstructure and serious segregation. In this paper, the rapid solidification of Al-Zn-Mg-Cu alloy was prepared by the single-roller belt method. The alloy strip was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and hardness test to study the microstructure and properties of the rapidly solidified aluminum alloy. The results show that the roller speed was an important parameters affecting the formability of the alloy. When the roller speed was 15 m/s, the aluminum alloy produced a thin bandwidth of 5 mm and a thickness of 150 um. As the rotation speed of the roller increased, the cooling rate of the melt increased, and the microstructure of the rapidly solidified Al-Zn-Mg-Cu aluminum alloy strip improved in grains refinement. Compared with the conventionally cast Al-Zn-Mg-Cu aluminum alloys, the Al-Zn-Mg-Cu aluminum alloys prepared by rapid solidification showed much finer crystal grains, and enhanced solid solubility of alloying elements with less precipitation of second phase and high hardness.


2006 ◽  
Vol 519-521 ◽  
pp. 549-554 ◽  
Author(s):  
Seong Taek Lim ◽  
Yong Yun Lee ◽  
Il Sang Eun

Recent 7xxx aluminum alloys have been designed for the finite use of thick semiproduct with contolled amount of constituent phases which mostly evolve during ingot preheat. In this study, the effects of constitutional change and preheat conditions of 7175 and 7050 type alloys on the evolution of constituent phases [M-, T-, S-phase and dispersoid] are presented. The constiuents evolve depending on the constitutional effect, primarily the change of Zn:Mg ratio, preheat condition comprising temperature and cooling rate following preheat. T- and M-phase are reprecipitated during cooling after preheat, depending on the alloy constitutions. S-phase is evolved depending on the constitution and preheat temperature, rather than preheat cooling rate. Prominent precipitation temperature interval of constituents are discussed in view of quaternary phase evolutions. In addition, evolutions of dispersoids together with M-phase are discussed. Specific alloy designs and preheat conditions could provide controlled microstructures for the thick 7xxx semiproducts.


2009 ◽  
Vol 45 (3) ◽  
pp. 203-205
Author(s):  
G. T. Adylov ◽  
M. A. Zufarov ◽  
G. V. Voronov ◽  
N. A. Kulagina ◽  
E. P. Mansurova ◽  
...  

2014 ◽  
Vol 67 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Angela de Jesus Vasconcelos ◽  
Cibele Vieira Arão da Silva ◽  
Antonio Luciano Seabra Moreira ◽  
Maria Adrina Paixão de Sousa da Silva ◽  
Otávio Fernandes Lima da Rocha

Al-Sn alloys are widely used in tribological applications. In this study, thermal, microstructural and microhardness (HV) analysis were carried out with an Al-5.5wt.%Sn alloy ingot produced by horizontal directional transient solidification. The main parameters analyzed include the growth rate (V L) and cooling rate (T R).These thermal parameters play a key role in the microstructural formation. The dendritic microstructure has been characterized by primary dendritic arm spacing (λ1) which was experimentally determined and correlated with V L, and T R. The behavior presented by the Al-5.5wt.%Sn alloy during solidification was similar to that of other aluminum alloys, i.e., the dendritic network became coarser with decreasing cooling rates, indicating that the immiscibility between aluminum and tin does not have a significant effect on the relationship between primary dendritic arm spacing and the cooling rate. The dependence of the microhardness on V L, T R and λ1 was also analyzed. It was found that for increasing values of T R, the values of HV decrease. On the other hand, the values of HV increase with increasing values of λ1.


China Foundry ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 118-123
Author(s):  
Wei Zhang ◽  
Qing-chun Xiang ◽  
Ying-dong Qu ◽  
Qing-feng Li ◽  
Ying-lei Ren ◽  
...  

Author(s):  
Olga V. Gusakova ◽  
Yuliya M. Shulya ◽  
Hanna M. Skibinskaya ◽  
Vladimir E. Ankudinov

The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.


2021 ◽  
Vol 97 (1) ◽  
pp. 3-8
Author(s):  
A.V. Nogovitsyn ◽  
◽  
V.L. Lakhnenko ◽  
I.R. Baranov ◽  
◽  
...  

Today, in the world, it is widely used in the production of aerospace equipment, sea vessels, railway transport and cars have high-strength aluminum alloys Al-Zn-Mg-Cu (for example, B95) and alloys of medium Al-Mg (AMg5), Al-Si-Mg ( AD35) and increased strength Al-Cu-Mg (D16). An in-depth study of individual factors that directly affect the structure of the work piece can be crucial for improving product quality during further thermomechanical processing. The article defines data on the grain size of the primary phase of aluminum alloys depending on the cooling rate of castings of various aluminum alloys (AD35, B95, D16, AMg5). It is shown that an increase in the cooling rate from 2-8 ° C / s to almost 1000 ° C / s leads to a decrease in the grain size of the фазы-phase from 200 μm to 10-40 μm. As a result of the experiments carried out in the work, the intervals of hardening of the investigated aluminum alloys were determined. It is shown that aluminum alloys containing copper in the chemical composition (≥1%) have a significantly wider crystallization range, in particular, B95 (1600C) and D16 ( 1320C). The samples of strip used in this work from high-strength aluminum alloys obtained by roll casting, to expand the range of investigated cooling rates, have a homogeneous structure with a uniform distribution of phase components, which ensures high functional properties of rolled products from high-strength, heat-strengthened alloys of the Al-Cu and AL-Zn systems. The obtained data of the research results can be recommended for use in the development of the domestic technology of roll casting of high-strength aluminum alloys. Keywords: High-strength aluminum alloys, roll casting, cooling rate, solidification time, differential thermal analysis, grain size.


Sign in / Sign up

Export Citation Format

Share Document