scholarly journals Effect of melt cooling rate on the microstructure and thermal properties of Al – Ge alloy

Author(s):  
Olga V. Gusakova ◽  
Yuliya M. Shulya ◽  
Hanna M. Skibinskaya ◽  
Vladimir E. Ankudinov

The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.

2016 ◽  
Vol 61 (2) ◽  
pp. 1083-1088
Author(s):  
M. Pastuszak ◽  
G. Cieślak ◽  
A. Dobkowska ◽  
J. Mizera ◽  
K.J. Kurzydłowski

Abstract The aim of the present work was to plan and carry out an experiment consisting of amorphization of industrial magnesium alloy WE 43 (Mg - 4 Y - 3 RE - 0.5 Zr) modified by the copper addition. Investigated alloy modified with 20% of copper was rapidly quenched with the use of melt spinning technique. The effects of cooling rate on the structure and properties of the obtained material were extensively analyzed. The structure and phase analysis of samples were examined using X-ray diffraction method (XRD) while the thermal stability of the samples was determined by differential scanning calorimetry (DSC). Microstructure observations were also conducted. The microhardness tests (HV0.02) and corrosion resistance tests were carried out to investigate the properties of the material. Corrosion resistance measurements were held using a typical three-electrode system. As the result of the research, the effect of cooling rate on microstructure and properties of investigated alloy was determined.


Author(s):  
J. M. Walsh ◽  
J. C. Whittles ◽  
B. H. Kear ◽  
E. M. Breinan

Conventionally cast γ’ precipitation hardened nickel-base superalloys possess well-defined dendritic structures and normally exhibit pronounced segregation. Splat quenched, or rapidly solidified alloys, on the other hand, show little or no evidence for phase decomposition and markedly reduced segregation. In what follows, it is shown that comparable results have been obtained in superalloys processed by the LASERGLAZE™ method.In laser glazing, a sharply focused laser beam is traversed across the material surface at a rate that induces surface localized melting, while avoiding significant surface vaporization. Under these conditions, computations of the average cooling rate can be made with confidence, since intimate contact between the melt and the self-substrate ensures that the heat transfer coefficient is reproducibly constant (h=∞ for perfect contact) in contrast to the variable h characteristic of splat quenching. Results of such computations for pure nickel are presented in Fig. 1, which shows that there is a maximum cooling rate for a given absorbed power density, corresponding to the limiting case in which melt depth approaches zero.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena Campagnoli ◽  
Andrea Ballatore ◽  
Valter Giaretto ◽  
Matteo Anselmino

AbstractAim of the present study is to analyze thermal events occurring during cryoablation. Different bovine liver samples underwent freezing cycles at different cooling rate (from 0.0075 to 25 K/min). Ice onset temperature and specific latent heat capacity of the ice formation process were measured according to differential scanning calorimetry signals. A computational model of the thermal events occurring during cryoablation was compiled using Neumann’s analytical solution. Latent heat (#1 = 139.8 ± 7.4 J/g, #2 = 147.8 ± 7.9 J/g, #3 = 159.0 ± 4.1 J/g) of all liver samples was independent of the ice onset temperature, but linearly dependent on the water content. Ice onset temperature was proportional to the logarithm of the cooling rate in the range 5 ÷ 25 K/min (#3a = − 12.2 °C, #3b = − 16.2 °C, #3c = − 6.6 °C at 5K/min; #3a = − 16.5 °C, #3b = − 19.3 °C, #3c = − 11.6 °C at 25 K/min). Ice onset temperature was associated with both the way in which the heat involved into the phase transition was delivered and with the thermal gradient inside the tissue. Ice onset temperature should be evaluated in the early phase of the ablation to tailor cryoenergy delivery. In order to obtain low ice trigger temperatures and consequent low ablation temperatures a high cooling rate is necessary.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


1996 ◽  
Vol 455 ◽  
Author(s):  
J. J. Suñol ◽  
M. T. Clavaguera-Mora ◽  
N. Clavaguera ◽  
T. Pradell

ABSTRACTMechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Mössbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.


1989 ◽  
Vol 4 (1) ◽  
pp. 44-49 ◽  
Author(s):  
S. A. Myers ◽  
C. C. Koch

There is controversy in the literature regarding the existence of the metastable γ′ phase with an ordered Ll2 structure in rapidly solidified Fe–Ni–Al–C alloys. In this study, the quench rate–metastable structure dependence was examined in the Fe–20Ni–8Al–2C (weight percent) alloy. The effect of silicon on the kinetics of phase formation was studied by adding two weight percent silicon to a base alloy of Fe–20Ni–8Al–2C. Samples were rapidly solidified in an arc hammer apparatus and examined by transmission electron microscopy. In the Fe–20Ni–8Al–2C alloy, the nonequilibrium γ′ and γ phases were found in foils 65 to 100 μm thick. At higher quench rates, i.e., thinner samples, the matrix was observed to be disordered fcc γ with K-carbide precipitates. Samples containing silicon were found to have a matrix composed of γ′ and γ structures when the foils were thicker than 40 μm. At higher quench rates, the matrix was disordered fcc γ with K-carbide precipitates. The nonequilibrium γ′ and γ structures are present in samples with or without silicon, but are observed at higher cooling rates with the addition of silicon. This sensitivity to cooling rate and composition in resulting metastable structures may explain the differences reported in the literature for these rapidly solidified materials.


2014 ◽  
Vol 30 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Linfang Li ◽  
Bingge Zhao ◽  
Bin Yang ◽  
Quanliang Zhang ◽  
Qijie Zhai ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document