scholarly journals Study regarding the influence of passive safety systems on the occupant in the case of Automatic Emergency Braking System activation

Author(s):  
A I Radu ◽  
D D Trusca ◽  
G R Toganel ◽  
B Benea
Author(s):  
Takashi Sato ◽  
Keiji Matsumoto ◽  
Kenji Hosomi ◽  
Keisuke Taguchi

iB1350 stands for an innovative, intelligent and inexpensive boiling water reactor 1350. It is the first Generation III.7 reactor after the Fukushima Daiichi accident. It has incorporated lessons learned from the Fukushima Daiichi accident and Western European Nuclear Regulation Association safety objectives. It has innovative safety to cope with devastating natural disasters including a giant earthquake, a large tsunami and a monster hurricane. The iB1350 can survive passively such devastation and a very prolonged station blackout without any support from the outside of a site up to 7 days even preventing core melt. It, however, is based on the well-established proven Advance Boiling Water Reactor (ABWR) design. The nuclear steam supply system is exactly the same as that of the current ABWR. As for safety design it has a double cylinder reinforced concrete containment vessel (Mark W containment) and an in-depth hybrid safety system (IDHS). The Mark W containment has double fission product confinement barriers and the in-containment filtered venting system (IFVS) that enable passively no emergency evacuation outside the immediate vicinity of the plant for a severe accident (SA). It has a large volume to hold hydrogen, a core catcher, a passive flooding system and an innovative passive containment cooling system (iPCCS) establishing passively practical elimination of containment failure even in a long term. The IDHS consists of 4 division active safety systems for a design basis accident, 2 division active safety systems for a SA and built-in passive safety systems (BiPSS) consisting of an isolation condenser (IC) and the iPCCS for a SA. The IC/PCCS pools have enough capacity for 7-day grace period. The IC/PCCS heat exchangers, core and spent fuel pool are enclosed inside the containment vessel (CV) building and protected against a large airplane crash. The iB1350 can survive a large airplane crash only by the CV building and the built-in passive safety systems therein. The dome of the CV building consists of a single wall made of steel and concrete composite. This single dome structure facilitates a short-term construction period and cost saving. The CV diameter is smaller than that of most PWR resulting in a smaller R/B. Each active safety division includes only one emergency core cooling system (ECCS) pump and one emergency diesel generator (EDG). Therefore, a single failure of the EDG never causes multiple failures of ECCS pumps in a safety division. The iB1350 is based on the proven ABWR technology and ready for construction. No new technology is incorporated but design concept and philosophy are initiative and innovative.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 244-255
Author(s):  
S. H. Abdel-Latif ◽  
A. M. Refaey

Abstract The AP600 is a Westinghouse Advanced Passive PWR with a two–loop 1 940 MWt. This reactor is equipped with advanced passive safety systems which are designed to operate automatically at desired set-points. On the other hand, the failure or nonavailability to operate of any of the passive safety systems may affect reactor safety. In this study, modeling and nodalization of primary and secondary loops, and all passive reactor cooling systems are conducted and a 10-inch cold leg break LOCA is analyzed using ATHLET 3.1A Code. During loss of coolant accident in which the passive safety system failure or nonavailability are considered, four different scenarios are assumed. Scenario 1 with the availability of all passive systems, scenario 2 is failure of one of the accumulators to activate, scenario 3 is without actuation of the automatic depressurization system (ADS) stages 1–3, and scenario 4 is without actuation of ADS stage 4. Results indicated that the actuation of passive safety systems provide sufficient core cooling and thus could mitigate the accidental consequence of LOCAs. Failure of one accumulator during LOCA causes early actuation of ADS and In-Containment Refueling Water Storage Tank (IRWST). In scenario 3 where the LOCA without ADS stages 1–3 actuations, the depressurization of the primary system is relatively slow and the level of the core coolant drops much earlier than IRWST actuation. In scenario 4 where the accident without ADS stage-4 activation, results in slow depressurization and the level of the core coolant drops earlier than IRWST injection. During the accident process, the core uncovery and fuel heat up did not happen and as a result the safety of AP600 during a 10-in. cold leg MBLOCA was established. The relation between the cladding surface temperature and the primary pressure with the actuation signals of the passive safety systems are compared with that of RELAP5/Mode 3.4 code and a tolerable agreement was obtained.


2006 ◽  
Author(s):  
Alfred Kuttenberger ◽  
Sybille Eisele ◽  
Thomas Lich ◽  
Thorsten Sohnke ◽  
Jorge Sans Sangorrin ◽  
...  

2015 ◽  
Vol 67 (1) ◽  
pp. 115-120
Author(s):  
Oana Victoria Oţăt

Abstract The present research study aims at analysing the kinematic and the dynamic behaviour of the vehicle’s driver in a frontal collision. Hence, a subsequent objective of the research paper is to establish the degree of injury suffered by the driver. Therefore, in order to achieve the objectives set, first, we had to define the type of the dummy placed in the position of the driver, and then to design the three-element assembly, i.e. the chair-steering wheel-dashboard assembly. Based on this model, the following step focused on the positioning of the dummy, which has also integrated the defining of the contacts between the components of the dummy and the seat elements. Seeking to model such a behaviour that would highly accurately reflect the driver’s movements in a frontal collision, passive safety systems have also been defined and simulated, namely the seatbelt and the frontal airbag.


Atomic Energy ◽  
2019 ◽  
Vol 127 (1) ◽  
pp. 14-18
Author(s):  
A. V. Morozov ◽  
A. P. Sorokin ◽  
D. S. Kalyakin ◽  
A. R. Sakhipgareev ◽  
A. S. Shlepkin

Author(s):  
Jyeshtharaj B. Joshi ◽  
Arun K. Nayak ◽  
Nitin Minocha ◽  
Eshita Pal ◽  
Ankur Kumar ◽  
...  

2020 ◽  
Vol 62 (12) ◽  
pp. 1187-1191
Author(s):  
Osman H. Mete ◽  
Halil Kayar

Abstract Traffic accidents are increasing as a result of an increasing number of vehicles and population growth in recent years. Active and passive safety systems are used in the vehicles we use today to reduce traffic accidents and prevent casualties. One of the passive security systems is the crush box (crashworthiness). It absorbs the energy generated during a crash by plastic deformation. In this study, tube height, diameter and thickness parameters were kept constant and degrees of conicity were varied 0°(flat tube),3°,7°,10°,12° and 15° The effects of conical crush boxes on axial crush behavior and their energy absorption ability, were investigated by Ls-Dyna explicit dynamic software.


Sign in / Sign up

Export Citation Format

Share Document