scholarly journals The heat gain-based generation method of coincident weather data for walls with a large thermal lag

Author(s):  
Zhengcheng Fang ◽  
Youming Chen ◽  
Shihai Wu
Keyword(s):  
Author(s):  
Iván Hernández-Pérez

Building roofs are sources of unwanted heat for buildings situated in zones with a warm climate. Thus, reflective coatings have emerged as an alternative to reject a significant fraction of solar energy received by roofs. In this research, the thermal behavior of concrete slab-type roofs with traditional and solar reflective coatings was simulated using a computational tool. Weather data from four cities in Mexico with a warm climate were used as boundary conditions. This tool is an in-house code based on the Finite Volume Method developed by the author to perform building components simulations. The code was validated with experimental data from previous work. A series of comparative simulations were developed, taking a gray roof as a control case. The results showed that for the roof without thermal insulation (single roof), the solar reflective coatings reduced the exterior surface between 11 and 16∘C. Consequently, the single roofs’ daily heat gain was reduced by a factor ranging between 41 and 54%. On the other hand, for the insulated roof, the reflective coatings reduced the exterior surface temperature between 17 and 21∘C. At the same time, the daily heat gain of composite roofs was reduced between 37 and 56%.


2021 ◽  
Vol 11 (7) ◽  
pp. 3263
Author(s):  
Iván Hernández-Pérez

Building roofs are sources of unwanted heat for buildings situated in zones with a warm climate. Thus, reflective coatings have emerged as an alternative to reject a fraction of the solar energy received by roofs. In this research, the thermal behavior of concrete slab roofs with traditional and solar reflective coatings was simulated using a computational tool. The studied slab configurations belong to two groups, non-insulated and insulated roofs. In the second group, the thermal insulation thickness complies with the value recommended by a national building energy standard. Weather data from four cities in Mexico with a warm climate were used as boundary conditions for the exterior surface of the roofs. The computational tool consisted of a numerical model based on the finite volume method, which was validated with experimental data. A series of comparative simulations was developed, taking a gray roof as the control case. The results demonstrated that white roofs without insulation had an exterior surface temperature between 11 and 16 °C lower than the gray roof without insulation. Thus, the daily heat gain of these white roofs was reduced by a factor ranging between 41 and 54%. On the other hand, white roofs with insulation reduced the exterior surface temperature between 17 and 21 °C compared to the gray roof with insulation. This temperature reduction caused insulated white roofs to have a daily heat gain between 37 and 56% smaller than the control case. Another contribution of this research is the assessment of two retrofitting techniques when they are applied at once. In other words, a comparison between a non-insulated gray roof and an insulated white roof revealed that the latter roof had a daily heat gain up to 6.4-times smaller than the first.


2016 ◽  
Vol 10 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Bemgba Nyakuma ◽  
◽  
Arshad Ahmad ◽  
Anwar Johari ◽  
Tuan Abdullah ◽  
...  

The study is aimed at investigating the thermal behavior and decomposition kinetics of torrefied oil palm empty fruit bunches (OPEFB) briquettes using a thermogravimetric (TG) analysis and the Coats-Redfern model. The results revealed that thermal decomposition kinetics of OPEFB and torrefied OPEFB briquettes is significantly influenced by the severity of torrefaction temperature. Furthermore, the temperature profile characteristics; Tonset, Tpeak, and Tend increased consistently due to the thermal lag observed during TG analysis. In addition, the torrefied OPEFB briquettes were observed to possess superior thermal and kinetic properties over the untorrefied OPEFB briquettes. It can be inferred that torrefaction improves the fuel properties of pelletized OPEFB for potential utilization in bioenergy conversion systems.


Author(s):  
Raama Alves ◽  
Thamires Bernardes ◽  
MANOEL ANTONIO FONSECA COSTA

2020 ◽  
Vol 38 (3A) ◽  
pp. 402-411
Author(s):  
Mohannad R. Ghanim ◽  
Sabah T. Ahmed

Double skin ventilated roof is one of the important passive cooling techniques to reduce solar heat gain through roofs. In this research, an experimental study was performed to investigate the thermal behaviour of a double skin roof model. The model was made of two parallel galvanized steel plates. Galvanized steel has been used in the roof construction of industrial buildings and storehouses in Iraq. The effect of inclination angle (ϴ) from the horizontal and the spacing (S) between the plates was investigated at different radiation intensities. It is found that using a double skin roof arrangement with a sufficient air gap (S) can reduce the heat gain significantly. The higher the inclination angle (ϴ) the higher the ventilation rate, the lower the heat gain through the roof. In this study, increasing the air gap from 2 cm to 4 cm reduced the heat gain significantly but when the gap was further increased to 6 cm, the reduction in the heat flux was insignificant. A dimensionless correlation was also reduced between Nusselt number () and the single parameter  where L is the channel length. This correlation can be handily utilized for designing of engineering applications dealing with high temperature difference natural convection heat transfer.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
LAL SINGH ◽  
PARMEET SINGH ◽  
RAIHANA HABIB KANTH ◽  
PURUSHOTAM SINGH ◽  
SABIA AKHTER ◽  
...  

WOFOST version 7.1.3 is a computer model that simulates the growth and production of annual field crops. All the run options are operational through a graphical user interface named WOFOST Control Center version 1.8 (WCC). WCC facilitates selecting the production level, and input data sets on crop, soil, weather, crop calendar, hydrological field conditions, soil fertility parameters and the output options. The files with crop, soil and weather data are explained, as well as the run files and the output files. A general overview is given of the development and the applications of the model. Its underlying concepts are discussed briefly.


2015 ◽  
Vol 54 (2) ◽  
pp. 98-106 ◽  
Author(s):  
F. Hutton ◽  
J.H. Spink ◽  
D. Griffin ◽  
S. Kildea ◽  
D. Bonner ◽  
...  

Abstract Virus diseases are of key importance in potato production and in particular for the production of disease-free potato seed. However, there is little known about the frequency and distribution of potato virus diseases in Ireland. Despite a large number of samples being tested each year, the data has never been collated either within or across years. Information from all known potato virus testing carried out in the years 2006–2012 by the Department of Agriculture Food and Marine was collated to give an indication of the distribution and incidence of potato virus in Ireland. It was found that there was significant variation between regions, varieties, years and seed classes. A definition of daily weather data suitable for aphid flight was developed, which accounted for a significant proportion of the variation in virus incidence between years. This use of weather data to predict virus risk could be developed to form the basis of an integrated pest management approach for aphid control in Irish potato crops.


Sign in / Sign up

Export Citation Format

Share Document