scholarly journals The impact of expanded polystyrene waste of different fineness on the properties of lightweight composite

Author(s):  
D Leonavičius ◽  
I Pundienė ◽  
J Pranckevičienė ◽  
M Kligys
TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


2020 ◽  
pp. 49-52
Author(s):  
S.E. YANUTINA ◽  

The relevance of research in the factory laboratory of JSC «198 KZHI», which is part of the HC GVSU «Center», is dictated by the need to dispose of foam polystyrene waste that occurs in large quantities when producing the precast concrete. In the production of three-layer external wall panels, polystyrene heatinsulating plates of the PPS 17-R-A brand are used as an effective insulation material. The secondary use of PPS 17-R-A for its intended purpose, as a heater, is not possible. The volume of foam polystyrene produced varies from 25 to 45 m3 per month. Utilization (disposal) of foam polystyrene waste is an expensive undertaking. Its use as a filler in the production of expanded polystyrene blocks was tested in the factory’s laboratory to produce foam polystyrene concrete with specified physical and mechanical characteristics. The results of testing of expanded polystyrene concrete of classes B2.5 and B 7.5 are presented. It is shown that under the conditions of the reinforced concrete factory technology, the production of polystyrene concrete blocks is possible with the achievement of the design strength. The information presented in the article is aimed at motivating specialists who produce recast concrete to the possibility of using foam polystyrene waste for low-rise construction. Keywords: foam polystyrene, ecology, energy efficiency, foam polystyrene concrete, foam polystyrene heat insulation plates, precast concrete.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 322
Author(s):  
Milad Pavopar

Due to destructive environmental effects of construction wastes and increasing amount of these wastes that are in conflict with sustainable development objectives, it is essential to adopt solutions in order to reduce such wastes regarding environment preservation. This study was conducted to examine impact of financial incentives on reducing construction wastes using pairwise comparisons. According to professional opinions and experience of experts in building industry based on the 7-point Likert scale, mean responses obtained to 4.93, 4.83, and 4.73 for waste materials (stone, tile, ceramic), ready mix concrete waste, and EPS (Expanded Polystyrene) waste, respectively. On the other hand, reliability of research instrument obtained at 0.77 using Cronbach’s alpha test. Moreover, it is seen that the studied materials in this research assigned 41% contribution of constructing costs to themselves; of them, fittings and tiles, ceramics and stone assigned the highest constructing cost to themselves with 12%contribution. In fact, waste of materials in projects under the “total price” contract 30-50% higher than projects under the “cost plus” contract. Increasing number of floors and area of construction project lead to average reduction in waste of materials from 4.4% to 1.4%. Change in regional price of housing will changes materials used in construction based on different prices.  


2019 ◽  
Vol 1386 ◽  
pp. 012075
Author(s):  
D Bellon ◽  
W H Zamudio ◽  
L C Tiria ◽  
S M Durán ◽  
I E Useche ◽  
...  

2019 ◽  
Vol 28 (4) ◽  
pp. 368-372
Author(s):  
Carl G. Mattacola ◽  
Carolina Quintana ◽  
Jed Crots ◽  
Kimberly I. Tumlin ◽  
Stephanie Bonin

Context: During thoroughbred races, jockeys are placed in potentially injurious situations, often with inadequate safety equipment. Jockeys frequently sustain head injuries; therefore, it is important that they wear appropriately certified helmets. Objective: The goals of this study are (1) to perform impact attenuation testing according to ASTM F1163-15 on a sample of equestrian helmets commonly used by jockeys in the United States and (2) to quantify headform acceleration and residual crush after repeat impacts at the same location. Participants and Design: Seven helmet models underwent impact attenuation testing according to ASTM F1163-15. A second sample of each helmet model underwent repeat impacts at the crown location for a total of 4 impacts. Setting: Laboratory. Intervention: Each helmet was impacted against a flat and equestrian hazard anvil. Main Outcome Measures: Headform acceleration was recorded during all impact and computed tomography scans were performed preimpact and after impacts 1 and 4 on the crown to quantify liner thickness. Results: Four helmets had 1 impact that exceeded the limit of 300g. During the repeated crown impacts, acceleration remained below 300g for the first and second impacts for all helmets, while only one helmet remained below 300g for all impacts. Foam liner thickness was reduced between 5% and 39% after the first crown impact and between 33% and 70% after the fourth crown impact. Conclusions: All riders should wear a certified helmet and replace it after sustaining a head impact. Following an impact, expanded polystyrene liners compress, and their ability to attenuate head acceleration during subsequent impacts to the same location is reduced. Replacing an impacted helmet may reduce a rider’s head injury risk.


2020 ◽  
pp. 0021955X2096521
Author(s):  
Somen K Bhudolia ◽  
Goram Gohel ◽  
Kah Fai Leong

Expanded Polystyrene (EPS) is a common material used to manufacture the inner foam liner of a bicycle helmet due to its outstanding energy absorption characteristics and light-weight property. The current research presents a novel corrugated expanded polystyrene (EPS) foam design concept which is used to enhance the impact dissipation of bicycle helmets from the safety standpoint to reduce head injuries and make them lighter. The baseline comparison study under impact for different foam configurations is compared with a conventional EPS foam sample without corrugation. Corrugated foam designs under current investigation are 12.5–20% lighter and provide up to 10% higher energy absorption. The details of the novel manufacturing concept, CPSC 1203 helmet impact tests, high-speed camera study to understand the differences in the failure mechanisms are deliberated in this paper.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Kazimierz Reszka ◽  
Mieczysław Szczypiński ◽  
Michał Marek Szczypiński ◽  
Elżbieta Kopczyńska ◽  
...  

The aim of the present study is to examine the effect of the addition of carbon nanoparticles (σsp2 hybridization) on the mechanical properties of foamed polystyrene. In this work, we focus on the study of the impact of compressive stress, tensile strength, bending strength, thermal conductivity ratio (λ), and water absorption of expanded polystyrene (EPS) reinforced with reduced graphene oxide and graphite. The results were compared with pristine EPS and reduced graphene oxide-reinforced EPS. All the nanocomposite specimens used for testing had a similar density. The study reveals that the nanocomposites exhibit different thermal conductivities and mechanical properties in comparison to pristine EPS. The enhancement in the properties of the nanocomposite could be associated with a more extensive structure of elementary cells of expanded polystyrene granules.


Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1135 ◽  
Author(s):  
Adnan Hossain ◽  
Monjur Mourshed

This study is aimed at assessing the impact of the insulation refurbishment of the English housing stock on the embodied energy needed for the various refurbishment scenarios and their corresponding operational energy use reductions. An embodied energy model comprising 22 million homes has been constructed, enabling the assessment and comparison of operational and embodied energy use due to the insulation refurbishment of various applicable building elements. Results indicate that mineral wool, sheep wool and expanded polystyrene (EPS) are the optimum insulation materials for cavity walls, cold pitch roofs and warm pitched roofs, respectively.


Sign in / Sign up

Export Citation Format

Share Document