scholarly journals Modelling the stress-strain state of tubular springs in the ANSYS software package

Author(s):  
S P Pirogov ◽  
D A Cherentsov
2016 ◽  
Vol 86 ◽  
pp. 02019 ◽  
Author(s):  
Anastasia Chulkova ◽  
Sergey Lukichev ◽  
Marina Romanovich

2016 ◽  
Vol 685 ◽  
pp. 186-190 ◽  
Author(s):  
Е.V. Eskina ◽  
E.G. Gromova

The paper describes the method of manufacture of profiles in cramped bending conditions using polyurethaneThe scope of studies included stress-strain state of elastic die and parent sheet, as well as the influence of the basic process parameters on characteristics of the produced items using ANSYS software.


Author(s):  
Anatoliy I. Bedov ◽  
Azat I. Gabitov ◽  
Azat A. Gallyamov ◽  
Aleksandr S. Salov

The results of studies on the analysis of the stress-strain state of the structures of bearing walls of high-hollow pottery. The way of modeling masonry finite element method. The experimental study of masonry structures produced in the Republic of Bashkortostan high-hollow pottery, set the nature of their work load, the mechanism of destruction. The results of the comparative evaluation of the calculations in the software package and the traditional “manual” calculation.


2021 ◽  
Vol 24 (3) ◽  
pp. 45-51
Author(s):  
Viktor H. Subotin ◽  
◽  
Oleksandr S. Burakov ◽  
Oleksii V. Dushyn ◽  
Viktor M. Iefymenko ◽  
...  

An analysis of the existing and prospective blade seal designs for Kaplan runners was performed. The selected design type provides the maximum ecological safety for Kaplan runners. A 3D model of runner hub sector with the trunnion, inner and outer bushes of blade trunnion was generated taking into account the cyclic symmetry of the runner design based on the modern automated design engineering system. A diagram of application of external loads from the blade and lever to the given 3D model of the Kaplan runner hub segment was developed. The contact problem was formulated to determine the stress-strain state as well as the contact pressures at the inner and outer bronze bushes of the Kaplan runner blade trunnions in different operating conditions. The problem was formulated for the finite element method, taking into consideration the diagram of external load application and contact restraints to the given 3D model of the Kaplan runner hub sector in the software package for engineering calculations. Using calculation results, principal stress distribution diagrams and the distribution diagram for the contact pressure at the outer and inner bronze bushes of blade trunnions were obtained. Strength calculation results were processed using the data of principal stress distribution diagrams, and the contact pressure values at the inner and outer bronze bushes of blade trunnions were determined. A methodology for further use of the given analytical model in the evaluation of stress-strain state of Kaplan runners involving modern automated design engineering systems and software package for engineering calculations was developed. The comparison of stress-strain states of the blade trunnion bushes was performed for the old and new designs of the Kaplan runner seal.


Author(s):  
V. P. KUPRIY ◽  
O. L. TIUTKIN ◽  
P. YE. ZAKHARCHENKO

Purpose. The article examines the effect on the stress-strain state of the parameters of the finite-element model created in the “Lira” software package in a numerical analysis of non-circular outlined tunnels. Methodology To achieve this goal, the authors developed finite element models of the calotte part of the mine during the construction of a double track railway tunnel using “Lira” software. In each of the models in the “Lira” software package, the interaction zone with temporary fastening was sampled in a specific way. After creation of models, their numerical analysis with the detailed research of his results was conducted. Findings. In the finite element models, the values of deformations and stresses in the horizontal and vertical axes, as well as the maximum values of the moments and longitudinal forces in the temporary fastening were obtained. A comparative analysis of the obtained values of the components of the stress-strain state with a change in the parameters of the finite element model was carried out. The graphs of the laws of these results from the discretization features of the two models were plotted. The third finite element model with a radial meshing in the zone of interaction of temporary support with the surrounding soil massif was investigated. Originality It has been established that in the numerical analysis of the SSS of a tunnel lining of a non-circular outline, its results substantially depend on the shape, size and configuration of the applied finite elements, on the size of the computational area of the soil massif, and also on the conditions for taking into account the actual (elastic or plastic) behavior of the soil massif.  Practical value. The features of discretization and the required dimensions of the computational area of the soil massif were determined when modeling the “lining – soil massif” system, which provide sufficient accuracy for calculating the parameters of the stress-strain state of the lining.


2021 ◽  
Vol 264 ◽  
pp. 02008
Author(s):  
Ruslan Khakimzyanov ◽  
Anvar Togaev ◽  
Aziz Rashidov

This article discusses the calculation of the strength of the frame structure of the universal chassis of the tractor trailer in the T-Flex software package and the comparative analysis of the results with experimental data and model data based on the principle of virtual work (possible movements).


2020 ◽  
Vol 86 (4) ◽  
pp. 46-55
Author(s):  
N. A. Makhutov ◽  
V. S. Kossov ◽  
E. S. Oganyan ◽  
G. M. Volokhov ◽  
M. N. Ovechnikov ◽  
...  

Analysis of the operational data related to rails failure showed that contact-fatigue defects consistently hold a prominent place. The goal of the study is to show the possibilities of using modern numerical methods in calculation assessment of the service life of rails before the onset of contact fatigue crack formation on a running surface depending on the values of axial load. To calculate a stress-strain state in the area of contact interaction between the wheel and rail a detailed finite-element model implemented in the MSC. Marc software package is used. The analysis revealed complex multiaxial and non-proportional nature of the stress-strain state. The Brown – Miller multiaxial fatigue model implemented in the MSC. Fatigue software package was taken to determine accumulation of the contact fatigue damages on a rail running surface. The model is based on the assumption that maximum fatigue damages in the metal occur in the area with the maximum shear stress. The impact of normal stresses in this area is also taken into account. The results of a comparative computational analysis of the rail life time confirm that the service life decreases with increasing axial loads, all other conditions being the same. With a share of 20% of freight trains with axle loads of 25 tonf in a daily pattern one should expect a decrease in the contact fatigue life of rails by 3 – 4 %. It is possible to improve the method for prediction of the contact fatigue life of rails in terms of experimental definition of the fatigue and strength characteristics of the rail steel depending on the degree of hardening of the running surface, their probabilistic properties and the use of a cumulative distribution of vertical forces taking into account the structure of the freight traffic passing through the section.


Sign in / Sign up

Export Citation Format

Share Document