scholarly journals Applications of Discrete Element Method (DEM) in modeling the impact of dynamic and technological parameters on the material movement on the vibrating screen surface

Author(s):  
Nguyen Van Xo ◽  
Nguyen Khac Linh
Author(s):  
Yujia Li ◽  
Peng Zhao ◽  
Li Mo ◽  
Tao Ren ◽  
Minghong Zhang

With the increasing requirements for energy conservation and environmental protection, multi-layer vibrating screens have become hot issues. Compared with single-layer vibrating screens, multi-layer vibrating screens has much better performance in terms of processing effect, treatment capacity, and environmental protection. The research on the physical parameters of the multi-layer vibrating screen is of great significance to the actual production. However, analysis and simulation studies of multi-layer vibrating screens are limited. In this paper, the screening process of wet particles on a multi-layer vibrating screen was simulated by using the discrete element method. The characteristics and application scope of the two vibration modes were analyzed. The particle penetration rate, the number of collisions, and the distribution of the particles under 23 combinations of structures and vibration parameters were investigated. The influence of different parameters on screening performance was analyzed. Several optimal combinations of frequency, amplitude and screen inclination angle under different working conditions were obtained. The screening efficiency of the balanced elliptic motion is higher than that of the linear motion. The best combination of the three parameters is 4 mm amplitude, 20 Hz frequency, and 3° inclination angle. The efficiency is higher when the particles follow a distribution of arithmetic on the screen. This study provides a reference for the efficient operation and optimal design of large multi-layer screening equipment.


Author(s):  
Rajesh P. Nair ◽  
C. Lakshmana Rao

Discrete Element Method (DEM) is an explicit numerical scheme to model the mechanical response of solid and particulate media. In our paper, we are introducing Quadrilateral Discrete Element Method (QDEM) for the simulation of the separation of elements in fixed beam subjected to impact load. QDEM results are compared with other DEM results available in literature. Impact loads include two cases: (a) a half sine wave and (b) a penetrator hitting the fixed beam. Separation criteria used for the discrete elements is maximum principal stress failure criteria. In QDEM, convergence study for the response of fixed beam is obtained using MATLAB platform. Validation of quadrilateral elements in fixed beam is being carried out by comparing the results with empirical formula available in literature for the impact analysis.


2017 ◽  
Vol 832 ◽  
pp. 345-382 ◽  
Author(s):  
Kevin M. Kellogg ◽  
Peiyuan Liu ◽  
Casey Q. LaMarche ◽  
Christine M. Hrenya

The continuum description of rapid cohesive-particle flows comprises the population balance, which tracks various agglomerate sizes in space and time, and kinetic-theory-based balances for momentum and granular energy. Here, fundamental closures are provided in their most general form. In previous population balances, the probability (‘success factor’) that a given collision results in agglomeration or breakage has been set to a constant even though it is well established that the outcome of a collision depends on the impact (relative) velocity. Here, physically based closures that relate the success factors to the granular temperature, a (continuum) measure of the impact velocity, are derived. A key aspect of this derivation is the recognition that the normal component of the impact velocity dictates whether agglomeration occurs. With regard to the kinetic-theory balances, cohesion between particles makes the collisions more dissipative, thereby decreasing the granular temperature. The extra dissipation due to cohesion is accounted for using an effective coefficient of restitution, again determined using the derived distribution of normal impact velocities. This collective treatment of the population and kinetic-theory balances results in a general set of equations that contain several parameters (e.g. critical velocities of agglomeration) that are cohesion-specific (van der Waals, liquid bridging, etc.). The determination of these cohesion-specific quantities using simple discrete element method simulations, as well as validation of the resulting theory, is also presented.


2021 ◽  
Vol 249 ◽  
pp. 07009
Author(s):  
Li Zeng ◽  
Andres Alfonso Peña Olarte ◽  
Roberto Cudmani

A series of compression tests on agglomerates of microspheres representing a single grain are conducted to investigate the impact of heterogeneity on the acoustic emissions (AE) generation. The grain heterogeneity is realized by using a Weibull shape parameter-augmented traditional discrete element method (DEM). During the compression process the development of the micro-cracks, and the magnitude and location of the AE events are tracked and recorded. Through a 3D visualization of the AE events, their location and the clustered broken bonds are identified. The current study demonstrates the potential of AE measurements to track changes in the fabric and structure of granular materials. The results of this DEM study will contribute to clarify the mechanism of particle breakage and its consideration in practical applications.


2021 ◽  
Author(s):  
Basel Alchikh-Sulaiman

In spite of wide applications of powders in industry, there is a lack of sufficient knowledge regarding the mixing of poly-disperse particles in rotary drum and slant cone mixers. The main objective of this study was to explore the mixing quality of mono-disperse, bi-disperse, tri-disperse, and poly-disperse particles inside rotary drum and slant cone mixers as a function of the drum speed, particle size, agitator speed, and the initial loading method through the discrete element method (DEM). To achieve this objective, experimental work and simulations were carried out. DEM results were validated using experimental data obtained from both sampling and image analysis techniques. DEM simulation results were in good agreement with the experimentally determined data, both qualitatively and quantitatively. Three major loading methods were defined: side-side, top-bottom, and back-front. Also, the mixing metric was utilized to measure the mixing quality. For bi-disperse particles inside the slant cone mixer, the mixing index increased to a maximum and decreased slightly before reaching a plateau at the drum speed of 15 rpm with different loading methods as a direct result of the segregation of particles of different sizes. The same behavior was observed in the rotary drum for bi-disperse, tri-disperse, and poly-disperse particles. The effect of agitator speed on the mixing performance for bi-disperse particles inside the slant cone mixer was also investigated. The addition of the agitator increased the mixing quality and reduced the segregation of particles with different sizes. The best mixing qualities for the tri-disperse and poly-disperse particles inside the rotary drum were recorded for the top-bottom smaller-to-larger loading method. For the slant cone mixer, highest mixing indices for tri-disperse and poly-disperse particles with the top-bottom smaller-to-larger loading method were obtained at drum speeds of 15 and 55 rpm, respectively. The impact of segregation for both mixers was reduced by introducing additional intermediate size particles.


2021 ◽  
Vol 3 (7 (111)) ◽  
pp. 59-67
Author(s):  
Volodymyr Statsenko ◽  
Oleksandr Burmistenkov ◽  
Tetiana Bila ◽  
Svitlana Demishonkova

The processes to form the compositions of loose materials in centrifugal mixers of continuous action have been considered. Based on the method of discrete elements, a mathematical model of the movement of particles in the rotor of the centrifugal mixer was built, taking into consideration their geometric and physical-mechanical parameters. To assess the extent of influence of these parameters on the nature of particle movement, a well-known mathematical model in the form of a system of differential equations was used, which was built on the basis of classical laws of mechanics. The process of mixing particles of two loose materials under different initial conditions of movement was modeled. The trajectories of individual particles along the bottom and side wall of the rotor were calculated. The results of the research reported here have established that the model built on the basis of the discrete element method makes it possible to improve the accuracy of determining the parameters of the movement of loose materials in the mixing zone. Calculations that involved this method show that the length of the particle trajectory is 2.9, and the movement time is 9 times greater than those calculated by the system of differential equations. The built and known mathematical models demonstrated the same nature of the distribution of components in the mixer. The value of the Pearson correlation coefficient between the calculated values of the coefficients of variation is 0.758. The best homogeneity is achieved by separating the flows of the mixture components and reducing the distance between their centers. The experimental study was carried out using a centrifugal mixer of continuous action with a conical rotor. Particle trajectories were constructed; it was established that the shape of the trajectory built by a discrete element method is closer to the experimental one. The results reported in this paper make it possible to predict the impact of the structural and technological parameters of the mixers of continuous action on the uniformity of the mixture


Sign in / Sign up

Export Citation Format

Share Document