scholarly journals Polymer-loaded three dimensional microwave cavities for hybrid quantum systems

Author(s):  
Myles Ruether ◽  
Clinton A Potts ◽  
John P Davis ◽  
Lindsay Jane LeBlanc

Abstract Microwave cavity resonators are crucial components of many quantum technologies and are a promising platform for hybrid quantum systems, as their open architecture enables the integration of multiple subsystems inside the cavity volume. To support these subsystems within the cavity, auxiliary structures are often required, but the effects of these structures on the microwave cavity mode are difficult to predict due to a lack of a priori knowledge of the materials’ response in the microwave regime. Understanding these effects becomes even more important when frequency matching is critical and tuning is limited, for example, when matching microwave modes to atomic resonances. Here, we study the microwave cavity mode in the presence of three commonly-used machinable polymers, paying particular attention to the change in resonance and the dissipation of energy. We demonstrate how to use the derived dielectric coefficient and loss tangent parameters for cavity design in a test case, wherein we match a polymer-filled 3D microwave cavity to a hyperfine transition in rubidium.

Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 223
Author(s):  
Fabio Bruzzone ◽  
Tommaso Maggi ◽  
Claudio Marcellini ◽  
Carlo Rosso

In this paper, a three-dimensional model for the estimation of the deflections, load sharing attributes, and contact conditions will be presented for pairs of meshing teeth in a spur gear transmission. A nonlinear iterative approach based on a semi-analytical formulation for the deformation of the teeth under load will be employed to accurately determine the point of application of the load, its intensity, and the number of contacting pairs without a priori assumptions. At the end of this iterative cycle the obtained deflected shapes are then employed to compute the pressure distributions through a contact mechanics model with non-Hertzian features and a technique capable of obtaining correct results even at the free edges of the finite length contacting bodies. This approach is then applied to a test case with excellent agreement with its finite element counterpart. Finally, several results are shown to highlight the influence on the quasi-static behavior of spur gears of different kinds and amounts of flank and face-width profile modifications.


Author(s):  
William J. Munro ◽  
Andreas Angerer ◽  
Thomas Astner ◽  
Stefan Putz ◽  
Jorg Schmiedmayer ◽  
...  

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Zeng-Xing Liu ◽  
Hao Xiong ◽  
Mu-Ying Wu ◽  
Yong-qing Li

2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2021 ◽  
pp. 0310057X2097665
Author(s):  
Natasha Abeysekera ◽  
Kirsty A Whitmore ◽  
Ashvini Abeysekera ◽  
George Pang ◽  
Kevin B Laupland

Although a wide range of medical applications for three-dimensional printing technology have been recognised, little has been described about its utility in critical care medicine. The aim of this review was to identify three-dimensional printing applications related to critical care practice. A scoping review of the literature was conducted via a systematic search of three databases. A priori specified themes included airway management, procedural support, and simulation and medical education. The search identified 1544 articles, of which 65 were included. Ranging across many applications, most were published since 2016 in non – critical care discipline-specific journals. Most studies related to the application of three-dimensional printed models of simulation and reported good fidelity; however, several studies reported that the models poorly represented human tissue characteristics. Randomised controlled trials found some models were equivalent to commercial airway-related skills trainers. Several studies relating to the use of three-dimensional printing model simulations for spinal and neuraxial procedures reported a high degree of realism, including ultrasonography applications three-dimensional printing technologies. This scoping review identified several novel applications for three-dimensional printing in critical care medicine. Three-dimensional printing technologies have been under-utilised in critical care and provide opportunities for future research.


2005 ◽  
Vol 22 (7) ◽  
pp. 909-929 ◽  
Author(s):  
Hirohiko Masunaga ◽  
Christian D. Kummerow

Abstract A methodology to analyze precipitation profiles using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) is proposed. Rainfall profiles are retrieved from PR measurements, defined as the best-fit solution selected from precalculated profiles by cloud-resolving models (CRMs), under explicitly defined assumptions of drop size distribution (DSD) and ice hydrometeor models. The PR path-integrated attenuation (PIA), where available, is further used to adjust DSD in a manner that is similar to the PR operational algorithm. Combined with the TMI-retrieved nonraining geophysical parameters, the three-dimensional structure of the geophysical parameters is obtained across the satellite-observed domains. Microwave brightness temperatures are then computed for a comparison with TMI observations to examine if the radar-retrieved rainfall is consistent in the radiometric measurement space. The inconsistency in microwave brightness temperatures is reduced by iterating the retrieval procedure with updated assumptions of the DSD and ice-density models. The proposed methodology is expected to refine the a priori rain profile database and error models for use by parametric passive microwave algorithms, aimed at the Global Precipitation Measurement (GPM) mission, as well as a future TRMM algorithms.


2005 ◽  
Vol 127 (2) ◽  
pp. 271-276 ◽  
Author(s):  
D. N. Dilley ◽  
D. A. Stephenson ◽  
P. V. Bayly ◽  
A. J. Schaut

Drill chatter degrades hole roundness, hole size, and tool life. This wastes time and money in tools, scrap, and hole rework. Chatter prediction in milling and turning has shown significant benefit to industry; however, researchers have been unable to accurately predict chatter in drilling applications. In the past, the drill, including the chisel edge, was modeled as either a fixed-fixed or fixed-pinned beam (Tekinalp, O., and Ulsoy, A. G., 1989, “Modeling and Finite Element Analysis of Drill Bit Vibrations,” ASME J. Eng. Indust. 111, pp. 148–154), but more recent research (Dilley, D. N., Bayly, P. V., and Schaut, A. J., 2005, “Effects of the Chisel Edge on the Chatter Frequency in Drilling,” J. Sound Vib., 281, pp. 423–428) has shown that a fixed-embedded model using springs improves frequency matching. The effects of the drill margins on dynamics have not been studied. The fixed-fixed or fixed-pinned model will be shown to be inappropriate for modeling the effects of margin engagement, while the spring-end boundary condition can better approximate the frequency increase observed experimentally as the drill margins engage deeper into the hole. In addition, the shifted frequency is well below the frequency found from an analytical fixed-fixed or fixed-pinned beam. Evidence that the margins cause the frequency shift is seen in three-dimensional waterfall plots that show this shift for pilot hole drilling (in which the margins are engaged), but not for tube drilling (in which margins are not engaged).


Sign in / Sign up

Export Citation Format

Share Document