Effect of Stabilizers and Thermoplastic Polyurethane on the Properties of Three-Dimensional Printed Photochromic Wood Flour/Polylactic Acid Composites

Author(s):  
Haiying Yang ◽  
Dong Wang ◽  
Hongjie Bi ◽  
Zechun Ren ◽  
Min Xu ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1234 ◽  
Author(s):  
Hongjie Bi ◽  
Min Xu ◽  
Gaoyuan Ye ◽  
Rui Guo ◽  
Liping Cai ◽  
...  

In this study, a series of heat-induced shape memory composites was prepared by the hot-melt extrusion and three-dimensional (3D) printing of thermoplastic polyurethane (TPU) using wood flour (WF) with different contents of EPDM-g-MAH. The mechanical properties, microtopography, thermal property analysis, and heat-induced shape memory properties of the composites were examined. The results showed that, when the EPDM-g-MAH content was 4%, the tensile elongation and tensile strength of the composites reached the maximum value. The scanning electron microscopy and dynamic mechanical analysis results revealed a good interface bonding between TPU and WF when the EPDM-g-MAH content was 4%. The thermogravimetric analysis indicated that the thermal stability of TPU/WF composites was enhanced by the addition of 4% EPDM-g-MAH. Heat-induced shape memory test results showed that the shape memory performance of composites with 4% EPDM-g-MAH was better than that of unmodified-composites. The composites’ shape recovery performance at a temperature of 60 °C was higher than that of the composites at ambient temperature. It was also found that, when the filling angle of the specimen was 45°, the recovery angle of the composites was larger.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3087
Author(s):  
Asmak Abdul Samat ◽  
Zuratul Ain Abdul Hamid ◽  
Mariatti Jaafar ◽  
Badrul Hisham Yahaya

Surgical reconstruction of extensive tracheal lesions is challenging. It requires a mechanically stable, biocompatible, and nontoxic material that gradually degrades. One of the possible solutions for overcoming the limitations of tracheal transplantation is a three-dimensional (3D) printed tracheal scaffold made of polymers. Polymer blending is one of the methods used to produce material for a trachea scaffold with tailored characteristics. The purpose of this study is to evaluate the mechanical and in vitro properties of a thermoplastic polyurethane (TPU) and polylactic acid (PLA) blend as a potential material for 3D printed tracheal scaffolds. Both materials were melt-blended using a single screw extruder. The morphologies (as well as the mechanical and thermal characteristics) were determined via scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, tensile test, and Differential Scanning calorimetry (DSC). The samples were also evaluated for their water absorption, in vitro biodegradability, and biocompatibility. It is demonstrated that, despite being not miscible, TPU and PLA are biocompatible, and their promising properties are suitable for future applications in tracheal tissue engineering.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 549 ◽  
Author(s):  
Rui Guo ◽  
Zechun Ren ◽  
Hongjie Bi ◽  
Min Xu ◽  
Liping Cai

The aim of the study was to improve the electrical and thermal conductivity of the polylactic acid/wood flour/thermoplastic polyurethane composites by Fused Deposition Modeling (FDM). The results showed that, when the addition amount of nano-graphite reached 25 pbw, the volume resistivity of the composites decreased to 108 Ω·m, which was a significant reduction, indicating that the conductive network was already formed. It also had good thermal conductivity, mechanical properties, and thermal stability. The adding of the redox graphene (rGO) combined with graphite into the composites, compared to the tannic acid-functionalized graphite or the multi-walled carbon nanotubes, can be an effective method to improve the performance of the biocomposites, because the resistivity reduced by one order magnitude and the thermal conductivity increased by 25.71%. Models printed by FDM illustrated that the composite filaments have a certain flexibility and can be printed onto paper or flexible baseplates.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2125
Author(s):  
José María Rosales ◽  
Cristina Cejudo ◽  
Lidia Verano ◽  
Lourdes Casas ◽  
Casimiro Mantell ◽  
...  

Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1791
Author(s):  
Chi Cuong Vu ◽  
Thanh Tai Nguyen ◽  
Sangun Kim ◽  
Jooyong Kim

Health monitoring sensors that are attached to clothing are a new trend of the times, especially stretchable sensors for human motion measurements or biological markers. However, price, durability, and performance always are major problems to be addressed and three-dimensional (3D) printing combined with conductive flexible materials (thermoplastic polyurethane) can be an optimal solution. Herein, we evaluate the effects of 3D printing-line directions (45°, 90°, 180°) on the sensor performances. Using fused filament fabrication (FDM) technology, the sensors are created with different print styles for specific purposes. We also discuss some main issues of the stretch sensors from Carbon Nanotube/Thermoplastic Polyurethane (CNT/TPU) and FDM. Our sensor achieves outstanding stability (10,000 cycles) and reliability, which are verified through repeated measurements. Its capability is demonstrated in a real application when detecting finger motion by a sensor-integrated into gloves. This paper is expected to bring contribution to the development of flexible conductive materials—based on 3D printing.


2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


Sign in / Sign up

Export Citation Format

Share Document