Downregulation of FABP5 Suppresses the Proliferation and Induces the Apoptosis of Gastric Cancer Cells Through the Hippo Signaling Pathway

2021 ◽  
Author(s):  
Wendong Wang ◽  
Zhenzhen Liu ◽  
Xin Chen ◽  
Yongqu Lu ◽  
Bingyan Wang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kai Niu ◽  
Yanling Liu ◽  
Zijun Zhou ◽  
Xuefeng Wu ◽  
Huaiwu Wang ◽  
...  

Background. Paeoniflorin has been reported to exert antitumor effects on human cancers. However, the role of paeoniflorin in gastric cancer and the underlying molecular mechanism are unelucidated. Therefore, we determined whether paeoniflorin could exhibit anticancer activity in gastric cancer cells. Methods. MTT was used to measure the viability of cells after paeoniflorin treatment. FACS was performed to examine cell apoptosis. Wound healing and transwell invasion assays were conducted to examine cell migratory and invasive activities. Western blotting was used to explore the mechanism by which paeoniflorin exerted tumor suppressive effects. Results. We found that paeoniflorin suppressed cell growth, enhanced apoptosis, and reduced cell invasion. Notably, we showed that paeoniflorin inhibited the expression of TAZ in gastric cancer cells. The overexpression of TAZ abrogated the antitumor activity of paeoniflorin in gastric cancer cells. In contrast, the downregulation of TAZ promoted the tumor suppressive effects of paeoniflorin treatment. Conclusion. Hence, targeting TAZ with paeoniflorin could be a novel approach for the treatment of human gastric cancer.


2018 ◽  
Vol Volume 11 ◽  
pp. 4177-4187 ◽  
Author(s):  
Hua Ge ◽  
Chaojie Liang ◽  
Zhixia Li ◽  
Dali An ◽  
Shulin Ren ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linwen Zhu ◽  
Zhe Li ◽  
Xiuchong Yu ◽  
Yao Ruan ◽  
Yijing Shen ◽  
...  

Abstract Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document