Multidrug-Resistant Salmonella enterica Subspecies I Serovar 4,[5],12:i:- Isolates Recovered from Food Safety and Inspection Service-Regulated Products and Food Animal Ceca, 2007–2016

2019 ◽  
Vol 16 (10) ◽  
pp. 679-686 ◽  
Author(s):  
Patricia L. White ◽  
Alice L. Green ◽  
Kristin G. Holt ◽  
Kis Robertson Hale
2019 ◽  
Vol 16 (3) ◽  
pp. 166-172 ◽  
Author(s):  
Rui Figueiredo ◽  
Roderick M. Card ◽  
Javier Nunez-Garcia ◽  
Nuno Mendonça ◽  
Gabriela Jorge da Silva ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Atul K. Singh ◽  
Amanda M. Bettasso ◽  
Euiwon Bae ◽  
Bartek Rajwa ◽  
Murat M. Dundar ◽  
...  

ABSTRACT We investigated the application capabilities of a laser optical sensor, BARDOT (b acterial rapid detection using optical scatter technology) to generate differentiating scatter patterns for the 20 most frequently reported serovars of Salmonella enterica. Initially, the study tested the classification ability of BARDOT by using six Salmonella serovars grown on brain heart infusion, brilliant green, xylose lysine deoxycholate, and xylose lysine tergitol 4 (XLT4) agar plates. Highly accurate discrimination (95.9%) was obtained by using scatter signatures collected from colonies grown on XLT4. Further verification used a total of 36 serovars (the top 20 plus 16) comprising 123 strains with classification precision levels of 88 to 100%. The similarities between the optical phenotypes of strains analyzed by BARDOT were in general agreement with the genotypes analyzed by pulsed-field gel electrophoresis (PFGE). BARDOT was evaluated for the real-time detection and identification of Salmonella colonies grown from inoculated (1.2 × 102 CFU/30 g) peanut butter, chicken breast, and spinach or from naturally contaminated meat. After a sequential enrichment in buffered peptone water and modified Rappaport Vassiliadis broth for 4 h each, followed by growth on XLT4 (~16 h), BARDOT detected S. Typhimurium with 84% accuracy in 24 h, returning results comparable to those of the USDA Food Safety and Inspection Service method, which requires ~72 h. BARDOT also detected Salmonella (90 to 100% accuracy) in the presence of background microbiota from naturally contaminated meat, verified by 16S rRNA sequencing and PFGE. Prolonged residence (28 days) of Salmonella in peanut butter did not affect the bacterial ability to form colonies with consistent optical phenotypes. This study shows BARDOT’s potential for nondestructive and high-throughput detection of Salmonella in food samples. IMPORTANCE High-throughput screening of food products for pathogens would have a significant impact on the reduction of food-borne hazards. A laser optical sensor was developed to screen pathogen colonies on an agar plate instantly without damaging the colonies; this method aids in early pathogen detection by the classical microbiological culture-based method. Here we demonstrate that this sensor was able to detect the 36 Salmonella serovars tested, including the top 20 serovars, and to identify isolates of the top 8 Salmonella serovars. Furthermore, it can detect Salmonella in food samples in the presence of background microbiota in 24 h, whereas the standard USDA Food Safety and Inspection Service method requires about 72 h.


2013 ◽  
Vol 79 (18) ◽  
pp. 5437-5449 ◽  
Author(s):  
Marta Martins ◽  
Matthew P. McCusker ◽  
Evonne M. McCabe ◽  
Denis O'Leary ◽  
Geraldine Duffy ◽  
...  

ABSTRACTSalmonella entericaserovar Typhimurium DT104 is a recognized food-borne pathogen that displays a multidrug-resistant phenotype and that is associated with systemic infections. At one extreme of the food chain, this bacterium can infect humans, limiting the treatment options available and thereby contributing to increased morbidity and mortality. Although the antibiotic resistance profile is well defined, little is known about other phenotypes that may be expressed by this pathogen at key points across the pork production food chain. In this study, 172Salmonella entericaserovar Typhimurium DT104/DT104b isolated from an extensive “farm-to-fork” surveillance study, focusing on the pork food chain, were characterized in detail. Isolates were cultured from environmental, processing, retail, and clinical sources, and the study focused on phenotypes that may have contributed to persistence/survival in these different niches. Molecular subtypes, along with antibiotic resistance profiles, tolerance to biocides, motility, and biofilm formation, were determined. As a basis for human infection, acid survival and the ability to utilize a range of energy sources and to adhere to and/or invade Caco-2 cells were also studied. Comparative alterations to biocide tolerance were observed in isolates from retail.l-Tartaric acid andd-mannose-1-phosphate induced the formation of biofilms in a preselected subset of strains, independent of their origin. All clinical isolates were motile and demonstrated an enhanced ability to survive in acidic conditions. Our data report on a diverse phenotype, expressed byS. Typhimurium isolates cultured from the pork production food chain. Extending our understanding of the means by which this pathogen adapts to environmental niches along the “farm-to-fork” continuum will facilitate the protection of vulnerable consumers through targeted improvements in food safety measures.


Author(s):  
Dr. Manish Kulshrestha ◽  
Dr. Anjali Kulshrestha

INTRODUCTION: Enteric fever includes typhoid and paratyphoid fever. Peak incidence is seen in children 5–15 years of age; but in regions where the disease is highly endemic, as in India, children younger than 5 years of age may have the highest infection rates. There are about 22 million new typhoid cases occur each year. Young children in poor, resource limited areas, who make up the majority of the new cases and there is a mortality figures of 215,000 deaths annually. A sharp decline in the rates of complications and mortality due to typhoid fever is observed as a result of introduction of effective antibiotic therapy since 1950s. MDR-ST became endemic in many areas of Asia, including India soon after multidrug-resistant strains of Salmonella enterica serotype typhi (MDR-ST) that were resistant to all the three first-line drugs then in use, namely chloramphenicol, amoxycillin and co-trimoxazole emerged in early 1990s. MATERIAL AND METHODS: Only blood culture or bone marrow culture positive cases were included. The patients with culture isolated enteric fever were included in the study. Antimicrobial susceptibility testing was carried out by disk diffusion method using antibiotic discs. The analysis of the antimicrobial susceptibility was carried out as per CLSI interpretative guidelines. RESULTS: A total of 82 culture positive cases were included in the present study. 80 culture isolates were from blood culture and 2 from the bone marrow culture. Salmonella entericasubspecies enterica serovartyphi (S typhi) was isolated from 67 (81.70%) patients while Salmonella enterica subspecies entericaserovarparatyphi (S paratyphi A) was isolated from 13 (15.85%) cases and 2 (2.44%) were Salmonella enterica subspecies entericaserovarschottmuelleri (S paratyphi B). Of the 82 cases 65(79.3%) isolates were resistant to ciprofloxacin, 17 (20.7%) were resistant to nalidixic acid, one (1.2%) case each was resistant to Cefotaxime and ceftriaxone, 2 (2.4%) were resistant to chloramphenicol, 10 (12.2%) were resistant and to cotrimoxazole 3 (3.7%) were resistant. CONCLUSION: In a culture positive cases 65(79.3%) isolates were resistant to ciprofloxacin and 17 (20.7%) were resistant to nalidixic acid. Multidrug resistant isolates were 65(79.3%).


2011 ◽  
Vol 193 (8) ◽  
pp. 2066-2066 ◽  
Author(s):  
K. Brankatschk ◽  
J. Blom ◽  
A. Goesmann ◽  
T. H. M. Smits ◽  
B. Duffy

2011 ◽  
Vol 55 (11) ◽  
pp. 5262-5266 ◽  
Author(s):  
Sophie A. Granier ◽  
Laura Hidalgo ◽  
Alvaro San Millan ◽  
Jose Antonio Escudero ◽  
Belen Gutierrez ◽  
...  

ABSTRACTThe 16S rRNA methyltransferase ArmA is a worldwide emerging determinant that confers high-level resistance to most clinically relevant aminoglycosides. We report here the identification and characterization of a multidrug-resistantSalmonella entericasubspecies I.4,12:i:− isolate recovered from chicken meat sampled in a supermarket on February 2009 in La Reunion, a French island in the Indian Ocean. Susceptibility testing showed an unusually high-level resistance to gentamicin, as well as to ampicillin, expanded-spectrum cephalosporins and amoxicillin-clavulanate. Molecular analysis of the 16S rRNA methyltransferases revealed presence of thearmAgene, together withblaTEM-1,blaCMY-2, andblaCTX-M-3. All of these genes could be transferreden blocthrough conjugation intoEscherichia coliat a frequency of 10−5CFU/donor. Replicon typing and S1 pulsed-field gel electrophoresis revealed that thearmAgene was borne on an ∼150-kb broad-host-range IncP plasmid, pB1010. To elucidate howarmAhad integrated in pB1010, a PCR mapping strategy was developed for Tn1548, the genetic platform forarmA.The gene was embedded in a Tn1548-like structure, albeit with a deletion of the macrolide resistance genes, and an IS26was inserted within themelgene. To our knowledge, this is the first report of ArmA methyltransferase in food, showing a novel route of transmission for this resistance determinant. Further surveillance in food-borne bacteria will be crucial to determine the role of food in the spread of 16S rRNA methyltransferase genes worldwide.


2012 ◽  
Vol 75 (4) ◽  
pp. 637-642 ◽  
Author(s):  
RONALD GAELEKOLWE SAMAXA ◽  
MAITSHWARELO IGNATIUS MATSHEKA ◽  
SUNUNGUKO WATA MPOLOKA ◽  
BERHANU ABEGAZ GASHE

The objective of the study was to provide baseline data on the prevalence and antimicrobial susceptibility of Salmonella in different types of raw meat sausages directly accessible to the consumers in Gaborone, Botswana. A total of 300 raw sausages comprising 79 beef, 78 pork, 72 chicken, and 71 mutton samples were concurrently analyzed for the presence of Salmonella using a conventional culture method and a validated PCR method. The PCR assay results were in full concordance with those of the conventional culture method for the detection of Salmonella. Sixty-five (21.7%) of 300 samples were positive for Salmonella by both the conventional culture method and PCR assay. Even though more chicken samples contained Salmonella than did any other sausage type, the difference in the presence of Salmonella among the four sausages types was not significant. Eleven serotypes were identified, and Salmonella enterica subsp. salamae II was most prevalent in all the sausage types. Beef sausages generally had higher mesophilic bacterial counts than did the other three sausage types. However, higher microbial counts were not reflective of the presence of salmonellae. Susceptibility of the Salmonella enterica serotypes to 20 antimicrobial agents was determined, and Salmonella Muenchen was resistant to the widest array of agents and was mostly isolated from chicken sausages. Regardless of the meat of origin, all 65 Salmonella isolates were resistant to at least four antimicrobial agents: amikacin, gentamicin, cefuroxime, and tombramycin. This resistance profile group was the most common in all four sausage types, comprising 90% of all Salmonella isolates from beef, 71% from pork, 63% from mutton, and 35% from chicken. These results suggest that raw sausages pose a risk of transmitting multidrug-resistant Salmonella isolates to consumers.


2006 ◽  
Vol 69 (4) ◽  
pp. 925-927 ◽  
Author(s):  
PETER B. BAHNSON ◽  
CLAUDIA SNYDER ◽  
LATIFA M. OMRAN

Because certain lymph nodes may be incorporated in food products, the presence of Salmonella enterica in these tissues could pose a food safety risk. We designed this two-part study to assess the prevalence of Salmonella in prescapular lymph nodes from normal slaughtered swine. Prescapular lymph nodes were collected from 300 systematically selected pigs in study 1 and, in study 2, from 75 pigs distributed among 10 herds. For study 2, pooled bacterial cultures were also completed on ileocecal lymph nodes, combining tissue from five pigs per pool (n = 60 pools). No Salmonella was detected in study 1 among prescapular lymph nodes (95% confidence interval, 0.0 to 1.16%). Salmonella was not detected in 75 prescapular lymph nodes from study 2, although Salmonella was detected in 5 of 10 herds in ileocecal lymph nodes. We conclude that prescapular lymph nodes posed a limited food safety risk in this population of pigs.


2013 ◽  
Vol 7 (12) ◽  
pp. 929-940 ◽  
Author(s):  
Amna Afzal ◽  
Yasra Sarwar ◽  
Aamir Ali ◽  
Abbas Maqbool ◽  
Muhammad Salman ◽  
...  

Introduction: This study aimed to determine the drug susceptibility patterns and genetic elements related to drug resistance in isolates of Salmonella enterica serovar Typhi (S. Typhi) from the Faisalabad region of Pakistan. Methodology: The drug resistance status of 80 isolates were evaluated by determining antimicrobial susceptibility, MICs, drug resistance genes involved, and the presence of integrons. Nalidixic acid resistance and reduced susceptibility to ciprofloxacin were also investigated by mutation screening of the gyrA, gyrB, parC, and parE genes. Results: Forty-seven (58.7%) isolates were multidrug resistant (MDR). Among the different resistance (R) types, the most commonly observed (13/80) was AmChStrTeSxtSmzTmp, which is the most frequent type observed in India and Pakistan. The most common drug resistant genes were blaTEM-1, cat, strA-strB, tetB, sul1, sul2, and dfrA7. Among the detected genes, only dfrA7 was found to be associated in the form of a single gene cassette within the class 1 integrons. Conclusions: MIC determination of currently used drugs revealed fourth-generation gatifloxacin as an effective drug against multidrug-resistant S. Typhi, but its clinical use is controversial. The Ser83→Phe substitution in gyrA was the predominant alteration in nalidixic acid-resistant isolates, exhibiting reduced susceptibility and increased MICs against ciprofloxacin. No mutations in gyrB, parC, or parE were detected in any isolate.


2012 ◽  
Vol 78 (9) ◽  
pp. 3087-3097 ◽  
Author(s):  
Orla Condell ◽  
Carol Iversen ◽  
Shane Cooney ◽  
Karen A. Power ◽  
Ciara Walsh ◽  
...  

ABSTRACTBiocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR)Salmonella entericastrains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds ofin vitroselection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure ofSalmonellastrains to an active biocidal compound, a high-level of tolerance was selected for a number ofSalmonellaserotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonicSalmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.


Sign in / Sign up

Export Citation Format

Share Document