scholarly journals Filling Adeno-Associated Virus Capsids: Estimating Success by Cryo-Electron Microscopy

2019 ◽  
Vol 30 (12) ◽  
pp. 1449-1460
Author(s):  
Suriyasri Subramanian ◽  
Anna C. Maurer ◽  
Carol M. Bator ◽  
Alexander M. Makhov ◽  
James F. Conway ◽  
...  
Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1194
Author(s):  
Qing Xie ◽  
Craig K. Yoshioka ◽  
Michael S. Chapman

Adeno-associated virus is the leading viral vector for gene therapy. AAV-DJ is a recombinant variant developed for tropism to the liver. The AAV-DJ structure has been determined to 1.56 Å resolution through cryo-electron microscopy (cryo-EM). Only apoferritin is reported in preprints at 1.6 Å or higher resolution, and AAV-DJ nearly matches the highest resolutions ever attained through X-ray diffraction of virus crystals. However, cryo-EM has the advantage that most of the hydrogens are clear, improving the accuracy of atomic refinement, and removing ambiguity in hydrogen bond identification. Outside of secondary structures where hydrogen bonding was predictable a priori, the networks of hydrogen bonds coming from direct observation of hydrogens and acceptor atoms are quite different from those inferred even at 2.8 Å resolution. The implications for understanding viral assembly mean that cryo-EM will likely become the favored approach for high resolution structural virology.


2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
A C Steven ◽  
N Cheng ◽  
B Mai ◽  
A Jones ◽  
C Butan ◽  
...  

2020 ◽  
Author(s):  
Christopher John Schlicksup ◽  
Patrick Laughlin ◽  
Steven Dunkelbarger ◽  
Joseph Che-Yen Wang ◽  
Adam Zlotnick

AbstractDevelopment of antiviral molecules that bind virion is a strategy that remains in its infancy and the details of their mechanisms are poorly understood. Here we investigate the behavior of DBT1, a dibenzothiazapine, which specifically interacts with the capsid protein of Hepatitis B Virus (HBV). We found that DBT1 stabilizes protein-protein interaction, accelerates capsid assembly, and can induce formation of aberrant particles. Paradoxically, DBT1 can cause pre-formed capsids to dissociate. These activities may lead to (i) assembly of empty and defective capsids, inhibiting formation of new virus and (ii) disruption of mature viruses, which are metastable, to inhibit new infection. Using cryo-electron microscopy we observed that DBT1 led to asymmetric capsids where well-defined DBT1 density was bound at all inter-subunit contacts. These results suggest that DBT1 can support assembly by increasing buried surface area but induce disassembly of metastable capsids by favoring asymmetry to induce structural defects.


2020 ◽  
Vol 5 (12) ◽  
pp. 1542-1552
Author(s):  
Wei Wang ◽  
Qingbing Zheng ◽  
Dequan Pan ◽  
Hai Yu ◽  
Wenkun Fu ◽  
...  

2022 ◽  
Author(s):  
Grant M Zane ◽  
Mark A Silveria ◽  
Nancy L Meyer ◽  
Tommi A White ◽  
Michael S Chapman

Adeno-associated virus (AAV) is the vector of choice for several approved gene therapy treatments and is the basis for many ongoing clinical trials. Various strains of AAV exist (referred to as serotypes), each with their own transfection characteristics. Here, we present a high-resolution cryo-electron microscopy structure (2.2 Å) for AAV serotype 4 (AAV4). The receptor responsible for transduction of the AAV4 clade of AAV viruses (including AAV11, 12 and rh32.33) is unknown. Other AAVs interact with the same cell receptor, Adeno-associated virus receptor (AAVR), in one of two different ways. AAV5-like viruses interact exclusively with the polycystic kidney disease-like [PKD]-1 domain of AAVR while most other AAVs interact primarily with the PKD2 domain. A comparison of the present AAV4 structure with prior corresponding structures of AAV5, AAV2 and AAV1 in complex with AAVR, provides a foundation for understanding why the AAV4-like clade is unable to interact with either PKD1 or PKD2. The conformation of the AAV4 capsid in variable regions I, III, IV and V on the viral surface appears to be sufficiently different from AAV2 to ablate binding with PKD2. Differences between AAV4 and AAV5 in variable region VII appear sufficient to exclude binding with PKD1.


2014 ◽  
Vol 89 (3) ◽  
pp. 1794-1808 ◽  
Author(s):  
Yu-Shan Tseng ◽  
Brittney L. Gurda ◽  
Paul Chipman ◽  
Robert McKenna ◽  
Sandra Afione ◽  
...  

ABSTRACTThe clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions.IMPORTANCEThe adeno-associated viruses (AAVs) are promising vectors forin vivotherapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of “polyclonal” reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.


Author(s):  
Gunter F. Thomas ◽  
M. David Hoggan

In 1968, Sugimura and Yanagawa described a small 25 nm virus like particle in association with the Matsuda strain of infectious canine hepatitis virus (ICHV). Domoto and Yanagawa showed that this particle was dependent on ICHV for its replication in primary dog kidney cell cultures (PDK) and was resistant to heating at 70°C for 10 min, and concluded that it was a canine adeno-associated virus (CAAV). Later studies by Onuma and Yanagawa compared CAAV with the known human serotypes (AAV 1, 2, 3) and AAV-4, known to be associated with African Green Monkeys. Using the complement fixation (CF) test, they found that CAAV was serologically related to AAV-3 and had wide distribution in the dog population of Japan.


Sign in / Sign up

Export Citation Format

Share Document