scholarly journals Nanoparticle Estrogen in Rat Spinal Cord Injury Elicits Rapid Anti-Inflammatory Effects in Plasma, Cerebrospinal Fluid, and Tissue

2015 ◽  
Vol 32 (18) ◽  
pp. 1413-1421 ◽  
Author(s):  
April Cox ◽  
Abhay Varma ◽  
John Barry ◽  
Alexey Vertegel ◽  
Naren Banik
2020 ◽  
Vol 715 ◽  
pp. 134619 ◽  
Author(s):  
Seung-Dam Heo ◽  
Jeongtae Kim ◽  
Yuna Choi ◽  
Poornima Ekanayake ◽  
Meejung Ahn ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Sun ◽  
Haiwei Zhang ◽  
Jianhui Shi ◽  
Tianwen Huang ◽  
Yansong Wang

Spinal cord injury (SCI) is a catastrophic disease that induces a complex cascade of cellular reactions at the local lesion area, including secondary cell death and inflammatory reactions. Accumulating evidence has showed pro- and anti-inflammatory roles of microRNAs (miRNAs), a class of small RNAs, in SCI. The present study is aimed at investigating the effects of two miRNAs, miRNA-146a and miRNA-202-3p, on inflammatory response after SCI. Initially, we found that the expression levels of miRNA-146a and miRNA-202-3p were increased in the plasma samples of 32 SCI patients at days 3 and 7 after admission and the rat spinal cord at days 3 and 7 after SCI modeling compared with healthy controls and sham-operated rats, respectively. The expression levels of TLR4, IRAK1, and TRAF6 were declined in the rat spinal cord at days 1, 3, and 7 after SCI modeling compared with sham-operated rats. Injection of miRNA-146a mimic or miRNA-202-3p mimic decreased TLR4, IRAK1, and TRAF6 expressions in the rat spinal cord at days 1, 3, and 7 after SCI modeling, while injection of miRNA-146a antagomir or miRNA-202-3p antagomir produced opposed results. Subsequent results showed that the expression levels of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-8 were upregulated in the rat serum at days 1, 3, and 7 after SCI modeling compared with sham-operated rats. Injection of miRNA-146a mimic or miRNA-202-3p mimic decreased TNF-α, IL-1β, IL-6, and IL-8 expression levels in the rat serum at days 1, 3, and 7 after SCI modeling, while injection of miRNA-146a antagomir or miRNA-202-3p antagomir yielded opposed results. The expression levels of TNF-α, IL-1β, IL-6, and IL-8 were higher in the supernatants of PC12 cells transfected with anti-miRNA-146a or anti-miRNA-202-3p than in those transfected with si-TLR4, si-IRAK1, or si-TRAF6. These findings support the notion that miRNA-146a/miRNA-202-3p exerts anti-inflammatory functions after SCI.


2020 ◽  
Vol 9 (4) ◽  
pp. 1221 ◽  
Author(s):  
Jacek M. Kwiecien ◽  
Liqiang Zhang ◽  
Jordan R. Yaron ◽  
Lauren N. Schutz ◽  
Christian J. Kwiecien-Delaney ◽  
...  

Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.


2017 ◽  
Vol 55 (3) ◽  
pp. 2174-2184 ◽  
Author(s):  
Zhihui Yang ◽  
Helen M. Bramlett ◽  
Ahmed Moghieb ◽  
Dongnan Yu ◽  
Ping Wang ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Emma K. A. Schmidt ◽  
Pamela J. F. Raposo ◽  
Abel Torres-Espin ◽  
Keith K. Fenrich ◽  
Karim Fouad

Abstract Background Minocycline is a clinically available synthetic tetracycline derivative with anti-inflammatory and antibiotic properties. The majority of studies show that minocycline can reduce tissue damage and improve functional recovery following central nervous system injuries, mainly attributed to the drug’s direct anti-inflammatory, anti-oxidative, and neuroprotective properties. Surprisingly the consequences of minocycline’s antibiotic (i.e., antibacterial) effects on the gut microbiota and systemic immune response after spinal cord injury have largely been ignored despite their links to changes in mental health and immune suppression. Methods Here, we sought to determine minocycline’s effect on spinal cord injury-induced changes in the microbiota-immune axis using a cervical contusion injury in female Lewis rats. We investigated a group that received minocycline following spinal cord injury (immediately after injury for 7 days), an untreated spinal cord injury group, an untreated uninjured group, and an uninjured group that received minocycline. Plasma levels of cytokines/chemokines and fecal microbiota composition (using 16s rRNA sequencing) were monitored for 4 weeks following spinal cord injury as measures of the microbiota-immune axis. Additionally, motor recovery and anxiety-like behavior were assessed throughout the study, and microglial activation was analyzed immediately rostral to, caudal to, and at the lesion epicenter. Results We found that minocycline had a profound acute effect on the microbiota diversity and composition, which was paralleled by the subsequent normalization of spinal cord injury-induced suppression of cytokines/chemokines. Importantly, gut dysbiosis following spinal cord injury has been linked to the development of anxiety-like behavior, which was also decreased by minocycline. Furthermore, although minocycline attenuated spinal cord injury-induced microglial activation, it did not affect the lesion size or promote measurable motor recovery. Conclusion We show that minocycline’s microbiota effects precede its long-term effects on systemic cytokines and chemokines following spinal cord injury. These results provide an exciting new target of minocycline as a therapeutic for central nervous system diseases and injuries.


2016 ◽  
Vol 50 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Jacek M. Kwiecien ◽  
Bozena Jarosz ◽  
Wendy Oakden ◽  
Michal Klapec ◽  
Greg J. Stanisz ◽  
...  

1994 ◽  
Vol 80 (1) ◽  
pp. 97-111 ◽  
Author(s):  
Shlomo Constantini ◽  
Wise Young

✓ Recent clinical trials have reported that methylprednisolone sodium succinate (MP) or the monosialic ganglioside GM1 improves neurological recovery in human spinal cord injury. Because GM1 may have additive or synergistic effects when used with MP, the authors compared MP, GM1, and MP+GM1 treatments in a graded rat spinal cord contusion model. Spinal cord injury was caused by dropping a rod weighing 10 gm from a height of 1.25, 2.5, or 5.0 cm onto the rat spinal cord at T-10, which had been exposed via laminectomy. The lesion volumes were quantified from spinal cord Na and K shifts at 24 hours after injury and the results were verified histologically in separate experiments. A single dose of MP (30 mg/kg), given 5 minutes after injury, reduced 24-hour spinal cord lesion volumes by 56% (p = 0.0052), 28% (p = 0.0065), and 13% (p > 0.05) in the three injury-severity groups, respectively, compared to similarly injured control groups treated with vehicle only. Methylprednisolone also prevented injury-induced hyponatremia and increased body weight loss in the spine-injured rats. When used alone, GM1 (10 to 30 mg/kg) had little or no effect on any measured variable compared to vehicle controls; when given concomitantly with MP, GM1 blocked the neuroprotective effects of MP. At a dose of 3 mg/kg, GM1 partially prevented MP-induced reductions in lesion volumes, while 10 to 30 mg/kg of GM1 completely blocked these effects of MP. The effects of MP on injury-induced hyponatremia and body weight loss were also blocked by GM1. Thus, GM1 antagonized both central and peripheral effects of MP in spine-injured rats. Until this interaction is clarified, the authors recommend that MP and GM1 not be used concomitantly to treat acute human spinal cord injury. Because GM1 modulates protein kinase activity, protein kinases inhibit lipocortins, and lipocortins mediate anti-inflammatory effects of glucocorticoids, it is proposed that the neuroprotective effects of MP are partially due to anti-inflammatory effects and that GM1 antagonizes the effects of MP by inhibiting lipocortin. Possible beneficial effects of GM1 reported in central nervous system injury may be related to the effects on neural recovery rather than acute injury processes.


Sign in / Sign up

Export Citation Format

Share Document