Effects of Donor Age, Gender, and In Vitro Cellular Aging on the Phenotypic, Functional, and Molecular Characteristics of Mouse Bone Marrow-Derived Mesenchymal Stem Cells

2011 ◽  
Vol 20 (9) ◽  
pp. 1549-1561 ◽  
Author(s):  
Olga Katsara ◽  
Louisa G. Mahaira ◽  
Eleni G. Iliopoulou ◽  
Ardiana Moustaki ◽  
Aristidis Antsaklis ◽  
...  
2016 ◽  
Vol 19 (2) ◽  
pp. 111-116
Author(s):  
Rafal Hussamildeen Abdullah ◽  
◽  
Shahlla Mahdi Salih ◽  
Nahi Yosef Yaseen ◽  
Ahmed Majeed Al-Shammari ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Jasmin Bagge ◽  
James N. MacLeod ◽  
Lise C. Berg

Background: Bone marrow (BM)- and adipose tissue (AT)-derived mesenchymal stem cells (MSCs) are used increasingly for autologous cell therapy in equine practice to treat musculoskeletal and other injuries. Current recommendations often call for 10–100 million MSCs per treatment, necessitating the expansion of primary cells in culture prior to therapeutic use. Of concern, human and rodent studies have shown a decline of both MSC recovery from sampled tissue and in vitro proliferative capacity with increasing donor age. This may be problematic for applications of autologous cell-based therapies in the important equine demographic of older patients.Objectives: To investigate the effect of donor age on the cellular proliferation of equine BM- and AT-MSCs.Study Design:In vitro study.Methods: BM- and AT-MSCs and dermal fibroblasts (biological control) were harvested from horses in five different age groups (n = 4, N = 60); newborn (0 days), yearling (15–17 months), adult (5–8 years), middle-aged (12–18 years), and geriatric (≥22 years). Proliferation of the cells was tested using an EdU incorporation assay and steady state mRNA levels measured for targeted proliferation, aging, and senescence biomarkers.Results: The cellular proliferation of equine BM- and AT-MSCs declined significantly in the geriatric cohort relative to the younger age groups. Proliferation levels in the two MSC types were equally affected by donor age. Analysis of steady state mRNA levels showed an up-regulation in tumor suppressors, apoptotic genes, and multiple growth factors in MSCs from old horses, and a down-regulation of some pro-cycling genes with a few differences between cell types.Main Limitations: Potential age-dependent differences in cell function parameters relevant to cell-therapy application were not investigated.Conclusions: The cellular proliferation of equine BM- and AT-MSCs declined at advanced donor ages. High levels of in vitro proliferation were observed in both MSC types from horses in the age groups below 18 years of age.


2020 ◽  
Vol 66 (3) ◽  
pp. 265-273
Author(s):  
O.V. Vysotskaya ◽  
A.I. Glukhov ◽  
Yu.P. Semochkina ◽  
S.A. Gordeev ◽  
E.Yu. Moskaleva

In proliferating normal and tumor cells, the telomere length (TL) is maintained by high telomerase activity (TA). In the absence of TA the TL maintenance involves a mechanism of alternative lengthening of telomeres (ALT). The aim of this study was to investigate the level of TA, the mTert expression and TL in cultured normal and transformed by γ- and γ,n-irradiation mesenchymal stem cells (MSCs) from mouse bone marrow, in sarcomas that developed after the transplantation of these cells into syngeneic mice, and in fibrosarcoma cell lines obtained from these tumors to find out the role of AT or ALT in maintaining TL in these cells. During prolonged cultivation of normal and transformed under the influence of γ- (1 Gy and 6 Gy) and γ,n-irradiation (0.05 Gy, 0.5 Gy, and 2 Gy) MSCs from mouse bone marrow, a decrease in TA was detected in irradiated cells. Even deeper decrease in TA was found in sarcomas developed after administration of transformed MSCs to syngeneic mice and in fibrosarcoma cell lines isolated from these tumors in which TA was either absent or was found to be at a very low level. TL in three of the four lines obtained was halved compared to the initial MSCs. With absent or low TA and reduced TL, the cells of all the obtained fibrosarcoma lines successfully proliferated without signs of a change in survival. The mechanism of telomere maintainance in fibrosarcoma cell lines in the absence of TA needs further investigation and it can be assumed that it is associated with the use of the ALT. The detected decrease or absence of TA in transformed under the action of irradiation MSCs with the preservation or even an increase in the telomerase gene expression may be associated with the formation of inactive splicing variants, and requires further study. The obtained lines of transformed MSCs and fibrosarcomas with TA and without the activity of this enzyme can be a useful model for studying the efficacy of TA and ALT inhibitors in vitro and in vivo.


2019 ◽  
Vol 53 (2) ◽  
pp. 93-99
Author(s):  
Nasim Malekmohamadi ◽  
Alireza Abdanipour ◽  
Mehrdad Ghorbanlou ◽  
Saeed Shokri ◽  
Reza Shirazi ◽  
...  

AbstractObjective. Stem cell therapy, specifically, pre-induction of mesenchymal stem cells toward male germ-like cells may be useful in patients with azoospermia. The aim of this study was to evaluate in vitro differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs) into male germ-like cells by indirect co-culture with testicular cells in the presence of bone morphogenetic protein 4 (BMP4).Methods. Experimental groups included: control (mouse BMSCs), treatment group-1 (BMSCs treated with BMP4), treatment group-2 (indirect co-culture of BMSCs with mouse testicular cells in the presence of BMP4) and treatment group-3 (indirect co-culture of BMSCs with testicular cells). BMSCs-derived male germ-like cells were evaluated by the expression of Dazl, and Stra8 using RT-qPCR.Results. Stra8 gene expression was significantly increased in the treatment group-2 and Dazl gene was significantly increased in the treatment group-1 compared to other groups. In conclusion, indirect co-culturing of BMSCs with testicular cells and BMP4 leads to the differentiation of BMSCs into male germ-like cells which express specific male germ-like genes. Testicular cells released factors that contributed to the differentiation of BMSCs into male germ progenitor cells.Conclusion. This study suggests that mesenchymal stem cells may be differentiated into male germ-like cells and therefore, may be a novel treatment option for men with azoospermia.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Yue Zhang ◽  
Xia-hui Ge ◽  
Xue-Jun Guo ◽  
Si-bin Guan ◽  
Xiao-ming Li ◽  
...  

This study aimed to investigate whether bone marrow-derived mesenchymal stem cells (BM-MSCs) can inhibit function of dendritic cells (DCs) by secreting Galectin-1 (Gal-1). BM-MSCs have been shown to inhibit the maturation and function of DCs, further inhibiting the activation and proliferation of T cells. However, the detailed mechanism remains unknown. In this current study, MSCs and DCs derived from mouse bone marrow were cocultured using Transwell culture plates under different in vitro conditions. The results showed that as the ratio of MSC to DC of the coculture system increased and the coculture time of the two cells prolonged, the concentrations of Gal-1, interleukin- (IL-) 10, and IL-12 in the supernatants were increased and the protein expression of Gal-1 on and within DCs was also enhanced. The phosphorylation of extracellular signal-regulated kinase (ERK) pathway in DCs was boosted, whereas p38 mitogen-activated protein kinase (MAPK) pathway phosphorylation was weakened. Meanwhile, the expression of costimulatory molecules on the surface of DCs was decreased, and the proliferative effect of DCs on allogeneic T cells was also decreased. Therefore, this present study indicated that Gal-1 secreted from MSCs upregulated expression of Gal-1 and stimulated formation of tolerance immunophenotype on DCs, where the underlying mechanism was the regulation of the MAPK signaling pathway in DCs, thereby inhibiting the function of DCs.


Sign in / Sign up

Export Citation Format

Share Document