scholarly journals Periodontal-Ligament-Derived Stem Cells Exhibit the Capacity for Long-Term Survival, Self-Renewal, and Regeneration of Multiple Tissue Types in Vivo

2014 ◽  
Vol 23 (9) ◽  
pp. 1001-1011 ◽  
Author(s):  
Danijela Menicanin ◽  
Krzysztof Marek Mrozik ◽  
Naohisa Wada ◽  
Victor Marino ◽  
Songtao Shi ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 866
Author(s):  
Luong Huu Dang ◽  
Yuan Tseng ◽  
How Tseng ◽  
Shih-Han Hung

In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 966-966 ◽  
Author(s):  
Marco Ruella ◽  
David Barrett ◽  
Saad S. Kenderian ◽  
Olga Shestova ◽  
Ted J. Hofmann ◽  
...  

Abstract Relapsing/refractory (r/r) B-cell Acute Lymphoblastic Leukemia (ALL) is associated with a poor prognosis in both pediatric and adult patients. Novel therapies targeting CD19 on leukemic blasts, such as anti-CD19 Chimeric Antigen Receptor T cells (CART19, CTL019) or bi-specific anti-CD19/CD3 antibodies (blinatumomab) induce significant responses in this population. However, CD19-negative relapses have been reported in 5-10% of patients following CART19 or blinatumomab therapies. This is likely due to selective pressure on leukemia sub-clones by these potent anti-CD19 agents. Hence, novel effective immunotherapies are needed in order to treat these patients. In order to identify potential additional B-ALL antigens, samples from 20 r/r patients (including two that relapsed with CD19-negative disease after treatment with CART19 therapy) were screened using a custom Quantigene RNA panel (Affymetrix) and expression on cell surface was confirmed by multiparametric flow cytometry. The IL-3 receptor α (CD123) was one of the most highly and homogeneously expressed antigens in the blasts of 16/20 r/r ALL patients, and 2/2 CD19-negative relapses. Therefore, we sought to investigate the role of CART targeting CD123 (CART123) against r/r B-ALL, focusing on treating patients with CD19-negative relapses after prior anti-CD19 directed therapy. CART123 was shown to be effective in eradicating acute myeloid leukemia in xenograft mouse models but its role in ALL has not been investigated (Gill et al, Blood, 2014). We used a 2nd generation CAR123 construct that comprised a 4-1BB (CD137) co-stimulatory domain. T cells were lentivirally transduced and expanded using anti-CD3/CD28 beads. Head-to-head in vitro comparisons between CART123 and CART19 revealed similar rates of proliferation, CD107a degranulation, cytokine production and cytotoxicity when CART were co-cultured with the CD19+CD123+ B-ALL cell line NALM-6 and with primary B-ALL blasts. For in vivo evaluation, we utilized the primary ALL model that was developed by our group (Barrett et al, Blood, 2011). In this model, primary blasts obtained from ALL patients were passaged in NOD-SCID-γ chain KO (NSG) mice, and transduced with GFP/luciferase. We injected NSG mice with 2 million primary ALL blasts i.v. (CD19+, CD123+) and after engraftment, mice were treated with CART19, CART123 or control untransduced T cells (1 million i.v.). Mice treated with control T cells succumbed quickly to disease, while mice treated with either CART19 or CART123 showed tumor eradication and long term survival (Figure 1). We then evaluated the role of CART123 in the treatment of leukemia obtained from an ALL patient that relapsed with CD19-negative disease after CART19 treatment. Both CART123 and CART19 were incubated with CD19-negative ALL blasts; CART123, but not CART19 resulted in significant degranulation, robust cytokine production, and potent cytotoxicity. To confirm these results in vivo, we established a unique model of CD19-negative B-ALL xenograft. We used primary CD19-negative blasts obtained from a pediatric patient that relapsed after CART19 therapy; CD19-negative blasts were passaged in vivo in NSG mice and stably transduced with GFP/luciferase. Importantly, the blasts retained their CD19-negative phenotype. After engraftment, mice were treated with CART19, CART123 or control T cells. CART19 and control T cells had no anti-tumor activity, while CART123 resulted in a complete eradication of the disease and long term survival in these mice (Figure 2). In conclusion, CART123 represents an important additional approach to treating B-ALL, in particular due to its activity against CD19-negative relapses. Since we have previously shown that treatment with CART123 can lead to myelosuppression, CART123 should be employed to eradicate disease prior to allogeneic transplantation. Future direction may include combining CART123 with CART19 preemptively in order to avoid CD19 antigen escapes. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Ruella: Novartis: Research Funding. Kenderian:Novartis: Research Funding. Shestova:Novartis: Research Funding. Scholler:Novartis: Research Funding. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. Nazimuddin:Novartis: Research Funding. Kalos:Novartis: CTL019 Patents & Royalties, Research Funding. Porter:Novartis: Research Funding. June:Novartis: Patents & Royalties, Research Funding. Grupp:Novartis: Consultancy, Research Funding. Gill:Novartis: Research Funding.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e29706 ◽  
Author(s):  
Shuzi Zhang ◽  
Hehua Dai ◽  
Ni Wan ◽  
Yolonda Moore ◽  
Zhenhua Dai

2006 ◽  
Vol 2 ◽  
pp. S626-S627
Author(s):  
George A. Carlson ◽  
Calanthe Wilson ◽  
Rebecca Young ◽  
Sherry Turner ◽  
David Westaway ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (11) ◽  
pp. e14035 ◽  
Author(s):  
Laura Rota Nodari ◽  
Daniela Ferrari ◽  
Fabrizio Giani ◽  
Mario Bossi ◽  
Virginia Rodriguez-Menendez ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Virginia Basso ◽  
Dat Q. Tran ◽  
Justin B. Schaal ◽  
Patti Tran ◽  
Yoshihiro Eriguchi ◽  
...  

AbstractInvasive candidiasis is an increasingly frequent cause of serious and often fatal infections in hospitalized and immunosuppressed patients. Mortality rates associated with these infections have risen sharply due to the emergence of multidrug resistant (MDR) strains of C. albicans and other Candida spp., highlighting the urgent need of new antifungal therapies. Rhesus theta (θ) defensin-1 (RTD-1), a natural macrocyclic antimicrobial peptide, was recently shown to be rapidly fungicidal against clinical isolates of MDR C. albicans in vitro. Here we found that RTD-1 was rapidly fungicidal against blastospores of fluconazole/caspofungin resistant C. albicans strains, and was active against established C. albicans biofilms in vitro. In vivo, systemic administration of RTD-1, initiated at the time of infection or 24 h post-infection, promoted long term survival in candidemic mice whether infected with drug-sensitive or MDR strains of C. albicans. RTD-1 induced an early (4 h post treatment) increase in neutrophils in naive and infected mice. In vivo efficacy was associated with fungal clearance, restoration of dysregulated inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-10, and IL-17, and homeostatic reduction in numbers of circulating neutrophils and monocytes. Because these effects occurred using peptide doses that produced maximal plasma concentrations (Cmax) of less than 1% of RTD-1 levels required for in vitro antifungal activity in 50% mouse serum, while inducing a transient neutrophilia, we suggest that RTD-1 mediates its antifungal effects in vivo by host directed mechanisms rather than direct fungicidal activity. Results of this study suggest that θ-defensins represent a new class of host-directed compounds for treatment of disseminated candidiasis.


Sign in / Sign up

Export Citation Format

Share Document