Engineering Tumors: A Tissue Engineering Perspective in Cancer Biology

2010 ◽  
Vol 16 (3) ◽  
pp. 351-359 ◽  
Author(s):  
Emily Burdett ◽  
F. Kurtis Kasper ◽  
Antonios G. Mikos ◽  
Joseph A. Ludwig
Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1578
Author(s):  
Anna Guller ◽  
Inga Kuschnerus ◽  
Vlada Rozova ◽  
Annemarie Nadort ◽  
Yin Yao ◽  
...  

Colonization of distant organs by tumor cells is a critical step of cancer progression. The initial avascular stage of this process (micrometastasis) remains almost inaccessible to study due to the lack of relevant experimental approaches. Herein, we introduce an in vitro/in vivo model of organ-specific micrometastases of triple-negative breast cancer (TNBC) that is fully implemented in a cost-efficient chick embryo (CE) experimental platform. The model was built as three-dimensional (3D) tissue engineering constructs (TECs) combining human MDA-MB-231 cells and decellularized CE organ-specific scaffolds. TNBC cells colonized CE organ-specific scaffolds in 2–3 weeks, forming tissue-like structures. The feasibility of this methodology for basic cancer research, drug development, and nanomedicine was demonstrated on a model of hepatic micrometastasis of TNBC. We revealed that MDA-MB-231 differentially colonize parenchymal and stromal compartments of the liver-specific extracellular matrix (LS-ECM) and become more resistant to the treatment with molecular doxorubicin (Dox) and Dox-loaded mesoporous silica nanoparticles than in monolayer cultures. When grafted on CE chorioallantoic membrane, LS-ECM-based TECs induced angiogenic switch. These findings may have important implications for the diagnosis and treatment of TNBC. The methodology established here is scalable and adaptable for pharmacological testing and cancer biology research of various metastatic and primary tumors.


2019 ◽  
Author(s):  
Jip Zonderland ◽  
Silvia Rezzola ◽  
Lorenzo Moroni

AbstractControlling basic fibroblast growth factor (bFGF) signaling is important for both tissue-engineering purposes, controlling proliferation and differentiation potential, and for cancer biology, influencing tumor progression and metastasis. Here, we observed that human mesenchymal stromal cells (hMSCs) no longer responded to soluble or covalently bound bFGF when cultured on microfibrillar substrates, while fibroblasts did. This correlated with a downregulation of FGF receptor 1 (FGFR1) expression of hMSCs on microfibrillar substrates, compared to hMSCs on conventional tissue culture plastic (TCP). hMSCs also expressed less SRF on ESP scaffolds, compared to TCP, while fibroblasts maintained high FGFR1 and SRF expression. Inhibition of actin-myosin tension or the MRTF/SRF pathway decreased FGFR1 expression in hMSCs, fibroblasts and MG63 osteosarcoma cells. This downregulation was functional, as hMSCs became irresponsive to bFGF in the presence of MRTF/SRF inhibitor. Together, our data show that hMSCs, but not fibroblasts, are irresponsive to bFGF when cultured on microfibrillar susbtrates by downregulation of FGFR1 through the MRTF/SRF pathway. This is the first time FGFR1 expression has been shown to be mechanosensitive and adds to the sparse literature on FGFR1 regulation. These results could open up new targets for cancer treatments and could aid designing tissue engineering constructs that better control cell proliferation.


Author(s):  
Anna Guller ◽  
Inga Kuschnerus ◽  
Vlada Rozova ◽  
Annemarie Nadort ◽  
Yin Yao ◽  
...  

Colonization of distant organs by tumor cells is a critical step of cancer progression. The initial avascular stage of this process (micrometastasis) remains almost inaccessible to study due to the lack of relevant experimental approaches. Here, we introduce an in vitro/in vivo model of organ-specific micrometastases of triple-negative breast cancer (TNBC) that is fully implemented in a cost-efficient chick embryo (CE) experimental platform. The model is built as three-dimensional (3D) tissue engineering constructs (TECs) combining human MDA-MB-231 cells and decellular-ized CE organ-specific scaffolds. TNBC cells colonized CE organ-specific scaffolds in 2-3 weeks, forming tissue-like structures. The feasibility of this methodology for basic cancer research, drug development and nanomedicine was demonstrated on a model of hepatic micrometastasis of TNBC. We revealed that MDA-MB-231 differentially colonize parenchymal and stromal com-partments of the liver-specific extracellular matrix (LS-ECM) and become more resistant to the treatment with molecular Doxorubicin (Dox) and Dox-loaded mesoporous silica nanoparticles than in monolayer cultures. When grafted on CE chorioallantoic membrane, LS-ECM-based TECs induced angiogenic switch. These findings may have important implications for the diag-nosis and treatment of TNBC. The methodology established here is scalable and adaptable for pharmacological testing and cancer biology research of various metastatic and primary tumors.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 44-58 ◽  
Author(s):  
A. E. Guller ◽  
P. N. Grebenyuk ◽  
A. B. Shekhter ◽  
A. V. Zvyagin ◽  
S. M. Deyev

This review focuses on modeling of cancer tumors using tissue engineering technology. Tumor tissue engineering (TTE) is a new method of three-dimensional (3D) simulation of malignant neoplasms. Design and development of complex tissue engineering constructs (TECs) that include cancer cells, cell-bearing scaffolds acting as the extracellular matrix, and other components of the tumor microenvironment is at the core of this approach. Although TECs can be transplanted into laboratory animals, the specific aim of TTE is the most realistic reproduction and long-term maintenance of the simulated tumor properties in vitro for cancer biology research and for the development of new methods of diagnosis and treatment of malignant neoplasms. Successful implementation of this challenging idea depends on bioreactor technology, which will enable optimization of culture conditions and control of tumor TECs development. In this review, we analyze the most popular bioreactor types in TTE and the emerging applications.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


Sign in / Sign up

Export Citation Format

Share Document