scholarly journals Stu1p Is Physically Associated with β-Tubulin and Is Required for Structural Integrity of the Mitotic Spindle

2002 ◽  
Vol 13 (6) ◽  
pp. 1881-1892 ◽  
Author(s):  
Hongwei Yin ◽  
Liru You ◽  
Danielle Pasqualone ◽  
Kristen M. Kopski ◽  
Tim C. Huffaker

Formation of the bipolar mitotic spindle relies on a balance of forces acting on the spindle poles. The primary outward force is generated by the kinesin-related proteins of the BimC family that cross-link antiparallel interpolar microtubules and slide them past each other. Here, we provide evidence that Stu1p is also required for the production of this outward force in the yeast Saccharomyces cerevisiae. In the temperature-sensitive stu1–5mutant, spindle pole separation is inhibited, and preanaphase spindles collapse, with their previously separated poles being drawn together. The temperature sensitivity of stu1–5 can be suppressed by doubling the dosage of Cin8p, a yeast BimC kinesin–related protein. Stu1p was observed to be a component of the mitotic spindle localizing to the midregion of anaphase spindles. It also binds to microtubules in vitro, and we have examined the nature of this interaction. We show that Stu1p interacts specifically with β-tubulin and identify the domains required for this interaction on both Stu1p and β-tubulin. Taken together, these findings suggest that Stu1p binds to interpolar microtubules of the mitotic spindle and plays an essential role in their ability to provide an outward force on the spindle poles.

1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


2000 ◽  
Vol 113 (9) ◽  
pp. 1623-1633 ◽  
Author(s):  
K.P. McNally ◽  
O.A. Bazirgan ◽  
F.J. McNally

The assembly and function of the mitotic spindle requires the activity of a number of microtubule-binding proteins. Some microtubule-binding proteins bind microtubules in vitro but do not co-localize with microtubules in interphase cells. Instead these proteins associate with specific subregions of the mitotic spindle. Katanin, a heterodimeric microtubule-severing ATPase, is found localized at mitotic spindle poles. In this paper we demonstrate that human p60 katanin and the C-terminal domain of human p80 katanin both bind microtubules in vitro. Association of these two proteins results in an increased microtubule affinity and increased microtubule-severing activity in vitro. Association of these subunits in transfected HeLa cells increases microtubule disassembly activity and targeting to spindle poles. The N-terminal WD40 domain of p80 katanin acts as a negative regulator of microtubule disassembly activity and is also required for spindle pole localization, possibly through interactions with another spindle-pole protein. These results support a model in which katanin is targeted to spindle poles through a combination of direct microtubule binding by the p60 subunit and through interactions between the WD40 domain and an unknown protein. We propose that both domains of p80 are essential in precisely regulating katanin's activity in vivo.


1999 ◽  
Vol 146 (5) ◽  
pp. 1005-1018 ◽  
Author(s):  
C. Fiona Cullen ◽  
Peter Deák ◽  
David M. Glover ◽  
Hiroyuki Ohkura

We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mitotic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or the focusing of spindle poles appears much less affected. The msps gene encodes a 227-kD protein with high similarity to the vertebrate microtubule-associated proteins (MAPs), human TOGp and Xenopus XMAP215, and with limited similarity to the Dis1 and STU2 proteins from fission yeast and budding yeast. Consistent with their sequence similarity, Msps protein also associates with microtubules in vitro. In the embryonic division cycles, Msps protein localizes to centrosomal regions at all mitotic stages, and spreads over the spindles during metaphase and anaphase. The absence of centrosomal staining in interphase of the cellularized embryos suggests that the interactions between Msps protein and microtubules or centrosomes may be regulated during the cell cycle.


2001 ◽  
Vol 276 (50) ◽  
pp. 47575-47582 ◽  
Author(s):  
Heather C. Gregson ◽  
John A. Schmiesing ◽  
Jong-Soo Kim ◽  
Toshiki Kobayashi ◽  
Sharleen Zhou ◽  
...  

The cohesin multiprotein complex containing SMC1, SMC3, Scc3 (SA), and Scc1 (Rad21) is required for sister chromatid cohesion in eukaryotes. Although metazoan cohesin associates with chromosomes and was shown to function in the establishment of sister chromatid cohesion during interphase, the majority of cohesin was found to be off chromosomes and reside in the cytoplasm in metaphase. Despite its dissociation from chromosomes, however, microinjection of an antibody against human SMC1 led to disorganization of the metaphase plate and cell cycle arrest, indicating that human cohesin still plays an important role in metaphase. To address the mitotic function of human cohesin, the subcellular localization of cohesin components was reexamined in human cells. Interestingly, we found that cohesin localizes to the spindle poles during mitosis and interacts with NuMA, a spindle pole-associated factor required for mitotic spindle organization. The interaction with NuMA persists during interphase. Similar to NuMA, a significant amount of cohesin was found to associate with the nuclear matrix. Furthermore, in the absence of cohesin, mitotic spindle asters failed to formin vitro. Our results raise the intriguing possibility that in addition to its well demonstrated function in sister chromatid cohesion, cohesin may be involved in spindle assembly during mitosis.


2002 ◽  
Vol 159 (6) ◽  
pp. 945-956 ◽  
Author(s):  
Sue L. Jaspersen ◽  
Thomas H. Giddings ◽  
Mark Winey

Accurate duplication of the Saccharomyces cerevisiae spindle pole body (SPB) is required for formation of a bipolar mitotic spindle. We identified mutants in SPB assembly by screening a temperature-sensitive collection of yeast for defects in SPB incorporation of a fluorescently marked integral SPB component, Spc42p. One SPB assembly mutant contained a mutation in a previously uncharacterized open reading frame that we call MPS3 (for monopolar spindle). mps3-1 mutants arrest in mitosis with monopolar spindles at the nonpermissive temperature, suggesting a defect in SPB duplication. Execution point experiments revealed that MPS3 function is required for the first step of SPB duplication in G1. Like cells containing mutations in two other genes required for this step of SPB duplication (CDC31 and KAR1), mps3-1 mutants arrest with a single unduplicated SPB that lacks an associated half-bridge. MPS3 encodes an essential integral membrane protein that localizes to the SPB half-bridge. Genetic interactions between MPS3 and CDC31 and binding of Cdc31p to Mps3p in vitro, as well as the fact that Cdc31p localization to the SPB is partially dependent on Mps3p function, suggest that one function for Mps3p during SPB duplication is to recruit Cdc31p, the yeast centrin homologue, to the half-bridge.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 453-470
Author(s):  
Sue Biggins ◽  
Needhi Bhalla ◽  
Amy Chang ◽  
Dana L Smith ◽  
Andrew W Murray

Abstract Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair α-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.


2009 ◽  
Vol 20 (21) ◽  
pp. 4575-4585 ◽  
Author(s):  
Paul Chang ◽  
Margaret Coughlin ◽  
Timothy J. Mitchison

Poly(ADP-ribose) (pADPr), made by PARP-5a/tankyrase-1, localizes to the poles of mitotic spindles and is required for bipolar spindle assembly, but its molecular function in the spindle is poorly understood. To investigate this, we localized pADPr at spindle poles by immuno-EM. We then developed a concentrated mitotic lysate system from HeLa cells to probe spindle pole assembly in vitro. Microtubule asters assembled in response to centrosomes and Ran-GTP in this system. Magnetic beads coated with pADPr, extended from PARP-5a, also triggered aster assembly, suggesting a functional role of the pADPr in spindle pole assembly. We found that PARP-5a is much more active in mitosis than interphase. We used mitotic PARP-5a, self-modified with pADPr chains, to capture mitosis-specific pADPr-binding proteins. Candidate binding proteins included the spindle pole protein NuMA previously shown to bind to PARP-5a directly. The rod domain of NuMA, expressed in bacteria, bound directly to pADPr. We propose that pADPr provides a dynamic cross-linking function at spindle poles by extending from covalent modification sites on PARP-5a and NuMA and binding noncovalently to NuMA and that this function helps promote assembly of exactly two poles.


1993 ◽  
Vol 13 (5) ◽  
pp. 2870-2881 ◽  
Author(s):  
L C Robinson ◽  
M M Menold ◽  
S Garrett ◽  
M R Culbertson

Casein kinase I is an acidotropic protein kinase class that is widely distributed among eukaryotic cell types. In the yeast Saccharomyces cerevisiae, the casein kinase I isoform encoded by the gene pair YCK1 and YCK2 is a 60- to 62-kDa membrane-associated form. The Yck proteins perform functions essential for growth and division; either alone supports growth, but loss of function of both is lethal. We report here that casein kinase I-like activity is associated with a soluble Yck2-beta-galactosidase fusion protein in vitro and that thermolabile protein kinase activity is exhibited by a protein encoded by fusion of a temperature-sensitive yck2 allele with lacZ. Cells carrying the yck2-2ts allele arrest at restrictive temperature with multiple, elongated buds containing multiple nuclei. This phenotype suggests that the essential functions of the Yck proteins include roles in bud morphogenesis, possibly in control of cell growth polarity, and in cytokinesis or cell separation. Further, a genetic relationship between the yck2ts allele and deletion of CDC55 indicates that the function of Yck phosphorylation may be related to that of protein phosphatase 2A activity.


1990 ◽  
Vol 97 (2) ◽  
pp. 259-271
Author(s):  
B. Buendia ◽  
C. Antony ◽  
F. Verde ◽  
M. Bornens ◽  
E. Karsenti

A monoclonal antibody (CTR2611) raised against centrosomes isolated from human lymphocytes (KE37) stains the pericentriolar material and intermediate filaments in the same cells. In MDCK cells, where most of the microtubules do not originate from the pericentriolar region during interphase, the antigen is distributed along intermediate filaments. At the onset of mitosis, a large fraction of the CTR2611 antigen associates with the minus-end domain of the microtubules of the mitotic spindle but not with the pericentriolar region itself. Treatment of mitotic MDCK cells with taxol leads to the assembly of many microtubule asters in the cytoplasm at the expense of the mitotic spindle. The CTR2611 antigen is present in the center of each of these asters. Similar asters can also be produced in vitro by adding taxol to concentrated Xenopus egg mitotic cytoplasm. Again, the antigen is found close to the center of the asters. These results suggest that CTR2611 antigen is associated with a material involved in microtubule nucleation or microtubule minus-end stabilization. The monoclonal antibody recognizes a 74 × 10(3) Mr polypeptide and other polypeptides at 120 × 10(3) Mr and 170 × 10(3) Mr. The 74 × 10(3) Mr polypeptide is found in all species examined so far, suggesting that it contains a highly conserved epitope.


1994 ◽  
Vol 14 (11) ◽  
pp. 7611-7620
Author(s):  
Y Ono ◽  
M Ohno ◽  
Y Shimura

In the budding yeast Saccharomyces cerevisiae, a number of PRP genes known to be involved in pre-mRNA processing have been genetically identified and cloned. Three PRP genes (PRP2, PRP16, and PRP22) were shown to encode putative RNA helicases of the family of proteins with DEAH boxes. However, any such splicing factor containing the helicase motifs in vertebrates has not been identified. To identify human homologs of this family, we designed PCR primers corresponding to the highly conserved region of the DEAH box protein family and successfully amplified five cDNA fragments, using HeLa poly(A)+ RNA as a substrate. One fragment, designated HRH1 (human RNA helicase 1), is highly homologous to Prp22, which was previously shown to be involved in the release of spliced mRNAs from the spliceosomes. Expression of HRH1 in a S. cerevisiae prp22 mutant can partially rescue its temperature-sensitive phenotype. These results strongly suggest that HRH1 is a functional human homolog of the yeast Prp22 protein. Interestingly, HRH1 but not Prp22 contains an arginine- and serine-rich domain (RS domain) which is characteristic of some splicing factors, such as members of the SR protein family. We could show that HRH1 can interact in vitro and in the yeast two-hybrid system with members of the SR protein family through its RS domain. We speculate that HRH1 might be targeted to the spliceosome through this interaction.


Sign in / Sign up

Export Citation Format

Share Document