scholarly journals GCS1, an Arf Guanosine Triphosphatase-activating Protein in Saccharomyces cerevisiae, Is Required for Normal Actin Cytoskeletal Organization In Vivo and Stimulates Actin Polymerization In Vitro

1999 ◽  
Vol 10 (3) ◽  
pp. 581-596 ◽  
Author(s):  
Ira J. Blader ◽  
M. Jamie T. V. Cope ◽  
Trevor R. Jackson ◽  
Adam A. Profit ◽  
Angela F. Greenwood ◽  
...  

Recent cloning of a rat brain phosphatidylinositol 3,4,5-trisphosphate binding protein, centaurin α, identified a novel gene family based on homology to an amino-terminal zinc-binding domain. In Saccharomyces cerevisiae, the protein with the highest homology to centaurin α is Gcs1p, the product of theGCS1 gene. GCS1 was originally identified as a gene conditionally required for the reentry of cells into the cell cycle after stationary phase growth. Gcs1p was previously characterized as a guanosine triphosphatase-activating protein for the small guanosine triphosphatase Arf1, and gcs1 mutants displayed vesicle-trafficking defects. Here, we have shown that similar to centaurin α, recombinant Gcs1p bound phosphoinositide-based affinity resins with high affinity and specificity. A novelGCS1 disruption strain (gcs1Δ) exhibited morphological defects, as well as mislocalization of cortical actin patches. gcs1Δ was hypersensitive to the actin monomer-sequestering drug, latrunculin-B. Synthetic lethality was observed between null alleles of GCS1 andSLA2, the gene encoding a protein involved in stabilization of the actin cytoskeleton. In addition, synthetic growth defects were observed between null alleles of GCS1 andSAC6, the gene encoding the yeast fimbrin homologue. Recombinant Gcs1p bound to actin filaments, stimulated actin polymerization, and inhibited actin depolymerization in vitro. These data provide in vivo and in vitro evidence that Gcs1p interacts directly with the actin cytoskeleton in S. cerevisiae.

1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


2004 ◽  
Vol 377 (2) ◽  
pp. 395-405 ◽  
Author(s):  
Raffaele LOPREIATO ◽  
Sonia FACCHIN ◽  
Geppo SARTORI ◽  
Giorgio ARRIGONI ◽  
Stefano CASONATO ◽  
...  

The Saccharomyces cerevisiae piD261/Bud32 protein and its structural homologues, which are present along the Archaea–Eukarya lineage, constitute a novel protein kinase family (the piD261 family) distantly related in sequence to the eukaryotic protein kinase superfamily. It has been demonstrated that the yeast protein displays Ser/Thr phosphotransferase activity in vitro and contains all the invariant residues of the family. This novel protein kinase appears to play an important cellular role as deletion in yeast of the gene encoding piD261/Bud32 results in the alteration of fundamental processes such as cell growth and sporulation. In this work we show that the phosphotransferase activity of Bud32 is relevant to its functionality in vivo, but is not the unique role of the protein, since mutants which have lost catalytic activity but not native conformation can partially complement the disruption of the gene encoding piD261/Bud32. A two-hybrid approach has led to the identification of several proteins interacting with Bud32; in particular a glutaredoxin (Grx4), a putative glycoprotease (Ykr038/Kae1) and proteins of the Imd (inosine monophosphate dehydrogenase) family seem most plausible interactors. We further demonstrate that Grx4 directly interacts with Bud32 and that it is phosphorylated in vitro by Bud32 at Ser-134. The functional significance of the interaction between Bud32 and the putative protease Ykr038/Kae1 is supported by its evolutionary conservation.


2013 ◽  
Vol 288 (29) ◽  
pp. 20966-20977 ◽  
Author(s):  
Haitao Zhang ◽  
Pooja Ghai ◽  
Huhehasi Wu ◽  
Changhui Wang ◽  
Jeffrey Field ◽  
...  

CAP (adenylyl cyclase-associated protein) was first identified in yeast as a protein that regulates both the actin cytoskeleton and the Ras/cAMP pathway. Although the role in Ras signaling does not extend beyond yeast, evidence supports that CAP regulates the actin cytoskeleton in all eukaryotes including mammals. In vitro actin polymerization assays show that both mammalian and yeast CAP homologues facilitate cofilin-driven actin filament turnover. We generated HeLa cells with stable CAP1 knockdown using RNA interference. Depletion of CAP1 led to larger cell size and remarkably developed lamellipodia as well as accumulation of filamentous actin (F-actin). Moreover, we found that CAP1 depletion also led to changes in cofilin phosphorylation and localization as well as activation of focal adhesion kinase (FAK) and enhanced cell spreading. CAP1 forms complexes with the adhesion molecules FAK and Talin, which likely underlie the cell adhesion phenotypes through inside-out activation of integrin signaling. CAP1-depleted HeLa cells also had substantially elevated cell motility as well as invasion through Matrigel. In summary, in addition to generating in vitro and in vivo evidence further establishing the role of mammalian CAP1 in actin dynamics, we identified a novel cellular function for CAP1 in regulating cell adhesion.


1991 ◽  
Vol 112 (6) ◽  
pp. 1151-1156 ◽  
Author(s):  
C Y Dadabay ◽  
E Patton ◽  
J A Cooper ◽  
L J Pike

The polyphosphoinositides, PIP and PIP2, have been proposed to regulate actin polymerization in vivo because they dissociate actin/gelsolin complexes in vitro. We tested this hypothesis by comparing the ability of EGF and bradykinin to affect PI metabolism and the actin cytoskeleton in A431 cells. EGF, but not bradykinin, was found to induce ruffling and dissociation of actin/gelsolin complexes in these cells. However, both EGF and bradykinin stimulated the accumulation of inositol phosphates in [3H]inositol-labeled cells indicating that stimulation of PI turnover is not sufficient for the induction of changes in actin/gelsolin complex levels. EGF stimulated a twofold increase in the level of PIP in A431 cells. Other phosphoinositide levels were not markedly altered. Treatment of the cells with cholera toxin abrogated the EGF-induced rise in PIP levels without altering the dissociation of actin from gelsolin. These data indicate that increases in PIP and/or PIP2 are not necessary for dissociation of actin/gelsolin complexes. Overall, these experiments suggest that in A431 cells, the effects of EGF on the actin cytoskeleton are unlikely to be mediated through changes in PIP or PIP2 levels.


2000 ◽  
Vol 113 (21) ◽  
pp. 3725-3736 ◽  
Author(s):  
C. Danninger ◽  
M. Gimona

The calponin family of F-actin-, tropomyosin- and calmodulin-binding proteins currently comprises three genetic variants. Their functional roles implicated from in vitro studies include the regulation of actomyosin interactions in smooth muscle cells (h1 calponin), cytoskeletal organisation in non-muscle cells (h2 calponin) and the control of neurite outgrowth (acidic calponin). We have now investigated the effects of calponin (CaP) isoforms and their C-terminal deletion mutants on the actin cytoskeleton by time lapse video microscopy of GFP fusion proteins in living smooth muscle cells and fibroblasts. It is shown that h1 CaP associates with the actin stress fibers in the more central part of the cell, whereas h2 CaP localizes to the ends of stress fibres and in the motile lamellipodial protrusions of spreading cells. Cells expressing h2 CaP spread more efficiently than those expressing h1 CaP and expression of GFP h1 CaP resulted in reduced cell motility in wound healing experiments. Notably, expression of GFP h1 CaP, but not GFP h2 CaP, conferred increased resistance of the actin cytoskeleton to the actin polymerization antagonists cytochalasin B and latrunculin B, as well as to the protein kinase inhibitors H7-dihydrochloride and rho-kinase inhibitor Y-27632. These data point towards a dual role of CaP in the stabilization and regulation of the actin cytoskeleton in vivo. Deletion studies further identify an autoregulatory role for the unique C-terminal tail sequences in the respective CaP isoforms.


2013 ◽  
Vol 91 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Douglas M. Templeton ◽  
Ying Liu

We provide an overview of our studies on cadmium and the actin cytoskeleton in mesangial cells, from earlier work on the effects of Cd2+ on actin polymerization in vivo and in vitro, to a role of disruption or stabilization of the cytoskeleton in apoptosis and apoptosis-like death. More recent studies implicate cadmium-dependent association of gelsolin and the Ca2+/calmodulin-dependent protein kinase II (CaMK-II) with actin filaments in cytoskeletal effects. We also present previously unpublished data concerning cadmium and the disruption of focal adhesions. The work encompasses studies on rat, mouse, and human mesangial cells. The major conclusions are that Cd2+ acts independently of direct effects on cellular Ca2+ levels to nevertheless activate Ca2+-dependent proteins that shift the actin polymerization–depolymerization in favour of depolymerization. Cadmium-dependent translocation of CaMK-IIδ, gelsolin, and a 50 kDa gelsolin cleavage fragment to the filamentous (F-)actin cytoskeleton appear to be involved. An intact filamentous actin cytoskeleton is required to initiate apoptotic and apoptotic-like death, but F-actin depolymerization is an eventual result.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092 ◽  
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1997 ◽  
Vol 137 (1) ◽  
pp. 141-153 ◽  
Author(s):  
Greg J. Hermann ◽  
Edward J. King ◽  
Janet M. Shaw

In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton.


1990 ◽  
Vol 267 (3) ◽  
pp. 709-713 ◽  
Author(s):  
M Fernandez-Lobato ◽  
M Cannon ◽  
J A Mitlin ◽  
R C Mount ◽  
A Jimenez

Biochemical and genetic analyses have been carried out on Saccharomyces cerevisiae strains characterized in vivo as sensitive, low-level-resistant or high-level-resistant to trichothecene antibiotics. Levels of drug resistance in vitro were determined for each strain and for suitable diploids derived from them. Ribosome biogenesis was also studied in selected haploids. It is suggested that resistance in all cases results from a mutation in the gene encoding ribosomal protein L3. If this is indeed the situation, then different mutations in this same gene not only can cause low-level or high-level resistance to trichothecene antibiotics but also can affect the maturation of either 40 S or 60 S ribosomal subunits.


Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 693-709 ◽  
Author(s):  
T S Karpova ◽  
M M Lepetit ◽  
J A Cooper

Abstract Mutations conferring synthetic lethality in combination with null mutations in CAP2, the gene encoding the beta subunit of capping protein of Saccharomyces cerevisiae, were obtained in a colony color assay. Monogenic inheritance was found for four mutations, which were attributed to three genetic loci. One mutation, sac6-69, is in the gene encoding fimbrin, another actin-binding protein, which was expected because null mutations in SAC6 and CAP2 are known to be synthetic-lethal. The other two loci were designated slc for synthetic lethality with cap2. These loci include the mutations slc1-66, slc1-87 and slc2-107. The slc mutations are semi-dominant, as shown by incomplete complementation in slc/SLC cap2/cap2 heterozygotes. The slc mutations and sac6-69 interact with each other, as shown by enhanced phenotypes in diheterozygotes. Moreover, the haploid slc2-107 sac6-69 double mutant is inviable. In a CAP2 background, the slc mutations lead to temperature and osmotic sensitivity. They alter the distribution of the actin cytoskeleton, including deficits in the presence of actin cables and the polarization of cortical actin patches. The slc mutations also lead to a pseudomycelial growth pattern. Together these results suggest that slc1 and slc2 encode components of the actin cytoskeleton in yeast and that the actin cytoskeleton can regulate the patterns of growth.


Sign in / Sign up

Export Citation Format

Share Document