scholarly journals The Spindle Checkpoint of Budding Yeast Depends on a Tight Complex between the Mad1 and Mad2 Proteins

1999 ◽  
Vol 10 (8) ◽  
pp. 2607-2618 ◽  
Author(s):  
Rey-Huei Chen ◽  
D. Michelle Brady ◽  
Dana Smith ◽  
Andrew W. Murray ◽  
Kevin G. Hardwick

The spindle checkpoint arrests the cell cycle at metaphase in the presence of defects in the mitotic spindle or in the attachment of chromosomes to the spindle. When spindle assembly is disrupted, the budding yeast mad and bub mutants fail to arrest and rapidly lose viability. We have cloned the MAD2 gene, which encodes a protein of 196 amino acids that remains at a constant level during the cell cycle. Gel filtration and co-immunoprecipitation analyses reveal that Mad2p tightly associates with another spindle checkpoint component, Mad1p. This association is independent of cell cycle stage and the presence or absence of other known checkpoint proteins. In addition, Mad2p binds to all of the different phosphorylated isoforms of Mad1p that can be resolved on SDS-PAGE. Deletion and mutational analysis of both proteins indicate that association of Mad2p with Mad1p is critical for checkpoint function and for hyperphosphorylation of Mad1p.

2000 ◽  
Vol 148 (5) ◽  
pp. 871-882 ◽  
Author(s):  
Kevin G. Hardwick ◽  
Raymond C. Johnston ◽  
Dana L. Smith ◽  
Andrew W. Murray

We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH2-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.


2009 ◽  
Vol 20 (11) ◽  
pp. 2796-2808 ◽  
Author(s):  
Sara Moutinho-Pereira ◽  
Alain Debec ◽  
Helder Maiato

Cytoskeleton microtubules undergo a reversible metamorphosis as cells enter and exit mitosis to build a transient mitotic spindle required for chromosome segregation. Centrosomes play a dominant but dispensable role in microtubule (MT) organization throughout the animal cell cycle, supporting the existence of concurrent mechanisms that remain unclear. Here we investigated MT organization at the entry and exit from mitosis, after perturbation of centriole function in Drosophila S2 cells. We found that several MTs originate from acentriolar microtubule-organizing centers (aMTOCs) that contain γ-tubulin and require Centrosomin (Cnn) for normal architecture and function. During spindle assembly, aMTOCs associated with peripheral MTs are recruited to acentriolar spindle poles by an Ncd/dynein-dependent clustering mechanism to form rudimentary aster-like structures. At anaphase onset, down-regulation of CDK1 triggers massive formation of cytoplasmic MTs de novo, many of which nucleated directly from aMTOCs. CDK1 down-regulation at anaphase coordinates the activity of Msps/XMAP215 and the kinesin-13 KLP10A to favor net MT growth and stability from aMTOCs. Finally, we show that microtubule nucleation from aMTOCs also occurs in cells containing centrosomes. Our data reveal a new form of cell cycle–regulated MTOCs that contribute for MT cytoskeleton remodeling during mitotic spindle assembly/disassembly in animal somatic cells, independently of centrioles.


2018 ◽  
Vol 217 (3) ◽  
pp. 861-876 ◽  
Author(s):  
Eleni Petsalaki ◽  
Maria Dandoulaki ◽  
George Zachos

The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod–ZW10–Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore–microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport–dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores.


2003 ◽  
Vol 163 (6) ◽  
pp. 1231-1242 ◽  
Author(s):  
Brian J. Tunquist ◽  
Patrick A. Eyers ◽  
Lin G. Chen ◽  
Andrea L. Lewellyn ◽  
James L. Maller

In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3357-3357
Author(s):  
Sara Rohrabaugh ◽  
Charlie Mantel ◽  
Hal E. Broxmeyer

Abstract Cell cycle checkpoints guarantee that cells move through the events of the cell cycle in the appropriate manner. The mitotic spindle checkpoint, also known as the spindle assembly checkpoint (SAC), helps to ensure the proper segregation of chromosomes into daughter cells during mitosis. Our lab recently reported on the condition of the SAC in both mouse and human embryonic stem cells (ESCs). We found that ESCs do not initiate apoptosis when the SAC is activated, which allowed these cells to tolerate a polyploid state resulting from the aberrant mitosis (Mantel et al. Blood.109: 4518–4527. 2007). These results lead us to conclude that the spindle checkpoint is uncoupled from apoptosis in ESCs. Knowing whether adult tissue specific stem/progenitor cells, such as hematopoietic stem cells (HSCs), have checkpoints which are uncoupled from apoptosis is extremely important information. If HSCs were to manifest such checkpoint uncoupling as that which we defined for ESCs, this might present a problem for the ex-vivo expansion and transplantation of HSCs. Using multiparametric permeablized cell flow cytometric analysis, we found the mitotic spindle checkpoint to be functional in primary murine sca 1+/c-kit+/lin- cells (LSK cells), a population highly enriched in primitive hematopoietic stem/progenitor cells. Using nocodazole, which exerts its affect by depolymerizing microtubules, we were able to activate the spindle checkpoint in low density mononuclear cells collected from murine bone marrow. Through flow cytometric analysis of the LSK cells in the mononuclear fraction, we were able to determine that spindle checkpoint activation in LSK cells resulted in a cell cycle arrest in mitosis, which was determined by DNA content of the cells, and eventually this arrest lead to cell death via apoptosis, as indicated by caspase-3 activation. This behavior is unlike that of ESCs, which exit mitosis and become polyploidy after prolonged spindle checkpoint activation. Thus the mitotic spindle checkpoint appears to be coupled to apoptosis in this particular set of tissue specific stem/progenitor cells, which lessens the possibility that ex-vivo expansion of hematopoietic stem cells will result in abnormalities to these cells that may give rise to disease initiation or progression after their transplantation.


1999 ◽  
Vol 145 (5) ◽  
pp. 979-991 ◽  
Author(s):  
Roberta Fraschini ◽  
Elisa Formenti ◽  
Giovanna Lucchini ◽  
Simonetta Piatti

The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.


2006 ◽  
Vol 26 (24) ◽  
pp. 9149-9161 ◽  
Author(s):  
Céline Clémenson ◽  
Marie-Claude Marsolier-Kergoat

ABSTRACT The DNA and the spindle assembly checkpoints play key roles in maintaining genomic integrity by coordinating cell responses to DNA lesions and spindle dysfunctions, respectively. These two surveillance pathways seem to operate mostly independently of one another, and little is known about their potential physiological connections. Here, we show that in Saccharomyces cerevisiae, the activation of the spindle assembly checkpoint triggers phosphorylation changes in two components of the DNA checkpoint, Rad53 and Rad9. These modifications are independent of the other DNA checkpoint proteins and are abolished in spindle checkpoint-defective mutants, hinting at specific functions for Rad53 and Rad9 in the spindle damage response. Moreover, we found that after UV irradiation, Rad9 phosphorylation is altered and Rad53 inactivation is accelerated when the spindle checkpoint is activated, which suggests the implication of the spindle checkpoint in the regulation of the DNA damage response.


2005 ◽  
Vol 4 (5) ◽  
pp. 867-878 ◽  
Author(s):  
Atasi Poddar ◽  
P. Todd Stukenberg ◽  
Daniel J. Burke

ABSTRACT Favored models of spindle checkpoint signaling propose that two inhibitory complexes (Mad2-Cdc20 and Mad2-Mad3-Bub3-Cdc20) must be assembled at kinetochores in order to inhibit mitosis. We have directly tested this model in the budding yeast Saccharomyces cerevisiae. The proteins Mad2, Mad3, Bub3, Cdc20, and Cdc27 in yeast were quantified, and there are sufficient amounts to form stoichiometric inhibitors of Cdc20 and the anaphase-promoting complex. Mad2 is present in two separate complexes in cells arrested in mitosis with nocodazole. There is a small amount of Mad2-Mad3-Bub3-Cdc20 and a much larger amount of a complex that contains Mad2-Cdc20. We use conditional mutants to show that both Mad2 and Mad3 are essential for establishment and maintenance of the spindle checkpoint. Both spindle checkpoint complexes containing Mad2 form in mitosis, not in response to checkpoint activation. The kinetochore is not required to form either complex. We propose that the conversion of Mad1-Mad2 to Cdc20-Mad2, a key step in generating inhibitory checkpoint complexes, is limited to mitosis by the availability of Cdc20 and is kinetochore independent.


Sign in / Sign up

Export Citation Format

Share Document