scholarly journals Organizational Diversity among Distinct Glycoprotein Endoplasmic Reticulum-associated Degradation Programs

2002 ◽  
Vol 13 (8) ◽  
pp. 2639-2650 ◽  
Author(s):  
Christopher M. Cabral ◽  
Yan Liu ◽  
Kelley W. Moremen ◽  
Richard N. Sifers

Protein folding and quality control in the early secretory pathway function as posttranslational checkpoints in eukaryote gene expression. Herein, an aberrant form of the hepatic secretory protein α1-antitrypsin was stably expressed in a human embryonic kidney cell line to elucidate the mechanisms by which glycoprotein endoplasmic reticulum-associated degradation (GERAD) is administered in cells from higher eukaryotes. After biosynthesis, genetic variant PI Z underwent alternative phases of secretion and degradation, the latter of which was mediated by the proteasome. Degradation required release from calnexin- and asparagine-linked oligosaccharide modification by endoplasmic reticulum mannosidase I, the latter of which occurred as PI Z was bound to the molecular chaperone grp78/BiP. That a distinct GERAD program operates in human embryonic kidney cells was supported by the extent of PI Z secretion, apparent lack of polymerization, inability of calnexin to participate in the degradation process, and sequestration of the glycoprotein folding sensor UDP-glucose:glycoprotein glucosyltransferase in the Golgi complex. Because UDP-glucose:glycoprotein glucosyltransferase sustains calnexin binding, its altered distribution is consistent with a GERAD program that hinders the reentry of substrates into the calnexin cycle, allowing grp78/BiP to partner with a lectin, other than calnexin, in the recognition of a two-component GERAD signal to facilitate substrate recruitment. How the processing of a mutant protein, rather than the mutation itself, can contribute to disease pathogenesis, is discussed.

2002 ◽  
Vol 13 (3) ◽  
pp. 880-891 ◽  
Author(s):  
Jacqueline Powers ◽  
Charles Barlowe

Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are introduced into this loop, an Erv14p-Axl2p complex accumulates in the endoplasmic reticulum, suggesting that Erv14p links Axl2p to the COPII coat. Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo.


2012 ◽  
Vol 92 (2) ◽  
pp. 537-576 ◽  
Author(s):  
Christopher J. Guerriero ◽  
Jeffrey L. Brodsky

Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding “problem,” as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 393-406 ◽  
Author(s):  
Linda J Wuestehube ◽  
Rainer Duden ◽  
Arlene Eun ◽  
Susan Hamamoto ◽  
Paul Korn ◽  
...  

Abstract We have isolated new temperature-sensitive mutations in five complementation groups, sec31-sec35, that are defective in the transport of proteins from the endoplasmic reticulum (ER) to the Golgi complex. The sec31-sec35 mutants and additional alleles of previously identified sec and vacuolar protein sorting (vps) genes were isolated in a screen based on the detection of α-factor precursor in yeast colonies replicated to and lysed on nitrocellulose filters. Secretory protein precursors accumulated in sec31-sec35 mutants at the nonpermissive temperature were core-glycosylated but lacked outer chain carbohydrate, indicating that transport was blocked after translocation into the ER but before arrival in the Golgi complex. Electron microscopy revealed that the newly identified sec mutants accumulated vesicles and membrane structures reminiscent of secretory pathway organelles. Complementation analysis revealed that sec32-1 is an allele of BOS1, a gene implicated in vesicle targeting to the Golgi complex, and sec33-1 is an allele of RET1, a gene that encodes the α subunit of coatomer.


2021 ◽  
Author(s):  
Janine McCaughey ◽  
Judith M. Mantell ◽  
Chris R. Neal ◽  
Kate Heesom ◽  
David J. Stephens

AbstractComplex machinery is required to drive secretory cargo export from the endoplasmic reticulum. In vertebrates, this includes transport and Golgi organization protein 1 (TANGO1), encoded by the Mia3 gene. Here, using genome engineering of human cells light microscopy, secretion assays, and proteomics, we show loss of Mia3/TANGO1 results in formation of numerous vesicles and a loss of early secretory pathway integrity. This restricts secretion not only of large proteins like procollagens but of all types of secretory cargo. Our data shows that Mia3/TANGO1 constrains the propensity of COPII to form vesicles promoting instead the formation of the ER-Golgi intermediate compartment. Thus, Mia3/TANGO1 facilities the secretion of complex and high volume cargoes from vertebrate cells.


2001 ◽  
Vol 114 (11) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tineke Voorn-Brouwer ◽  
Astrid Kragt ◽  
Henk F. Tabak ◽  
Ben Distel

The classic model for peroxisome biogenesis states that new peroxisomes arise by the fission of pre-existing ones and that peroxisomal matrix and membrane proteins are recruited directly from the cytosol. Recent studies challenge this model and suggest that some peroxisomal membrane proteins might traffic via the endoplasmic reticulum to peroxisomes. We have studied the trafficking in human fibroblasts of three peroxisomal membrane proteins, Pex2p, Pex3p and Pex16p, all of which have been suggested to transit the endoplasmic reticulum before arriving in peroxisomes. Here, we show that targeting of these peroxisomal membrane proteins is not affected by inhibitors of COPI and COPII that block vesicle transport in the early secretory pathway. Moreover, we have obtained no evidence for the presence of these peroxisomal membrane proteins in compartments other than peroxisomes and demonstrate that COPI and COPII inhibitors do not affect peroxisome morphology or integrity. Together, these data fail to provide any evidence for a role of the endoplasmic reticulum in peroxisome biogenesis.


2014 ◽  
Vol 290 (8) ◽  
pp. 4981-4993 ◽  
Author(s):  
Hideki Shibata ◽  
Takashi Kanadome ◽  
Hirofumi Sugiura ◽  
Takeru Yokoyama ◽  
Minami Yamamuro ◽  
...  

2011 ◽  
Vol 438 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Nikolay V. Kukushkin ◽  
Dominic S. Alonzi ◽  
Raymond A. Dwek ◽  
Terry D. Butters

During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase.


2013 ◽  
Vol 94 (12) ◽  
pp. 2636-2646 ◽  
Author(s):  
Rebecca Midgley ◽  
Katy Moffat ◽  
Stephen Berryman ◽  
Philippa Hawes ◽  
Jennifer Simpson ◽  
...  

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER–Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.


2005 ◽  
Vol 72 ◽  
pp. 1-13 ◽  
Author(s):  
Krysten J. Palmer ◽  
Peter Watson ◽  
David J. Stephens

The organization of intracellular compartments and the transfer of components between them are central to the correct functioning of mammalian cells. Proteins and lipids are transferred between compartments by the formation, movement and subsequent specific fusion of transport intermediates. These vesicles and membrane clusters must be coupled to the cytoskeleton and to motor proteins that drive motility. Anterograde ER (endoplasmic reticulum)-to-Golgi transport, and the converse step of retrograde traffic from the Golgi to the ER, are now known to involve coupling of membranes to the microtubule cytoskeleton. Here we shall discuss our current understanding of the mechanisms that link membrane traffic in the early secretory pathway to the microtubule cytoskeleton in mammalian cells. Recent data have also provided molecular detail of functional co-ordination of motor proteins to specify directionality, as well as mechanisms for regulating motor activity by protein phosphorylation.


2004 ◽  
Vol 15 (2) ◽  
pp. 908-921 ◽  
Author(s):  
Gregory Huyer ◽  
Gaby L. Longsworth ◽  
Deborah L. Mason ◽  
Monica P. Mallampalli ◽  
J. Michael McCaffery ◽  
...  

The folding of nascent secretory and membrane proteins is monitored by the endoplasmic reticulum (ER) quality control system. Misfolded proteins are retained in the ER and can be removed by ER-associated degradation. As a model for the ER quality control of multispanning membrane proteins in yeast, we have been studying mutant forms of Ste6p. Here, we identify mislocalized mutant forms of Ste6p that induce the formation of, and localize to, prominent structures that are absent in normal cells. We have named these structures ER-associated compartments (ERACs), based on their juxtaposition to and connection with the ER, as observed by fluorescence and electron microscopy. ERACs comprise a network of tubulo-vesicular structures that seem to represent proliferated ER membranes. Resident ER lumenal and membrane proteins are present in ERACs in addition to their normal ER localization, suggesting there is no barrier for their entry into ERACs. However, the forms of Ste6p in ERACs are excluded from the ER and do not enter the secretory pathway; instead, they are ultimately targeted for ER-associated degradation. The presence of ERACs does not adversely affect secretory protein traffic through the ER and does not lead to induction of the unfolded protein response. We propose that ERACs may be holding sites to which misfolded membrane proteins are specifically diverted so as not to interfere with normal cellular functions. We discuss the likelihood that related ER membrane proliferations that form in response to certain other mutant or unassembled membrane proteins may be substantially similar to ERACs.


Sign in / Sign up

Export Citation Format

Share Document