scholarly journals Markers for Detergent-resistant Lipid Rafts Occupy Distinct and Dynamic Domains in Native Membranes

2004 ◽  
Vol 15 (6) ◽  
pp. 2580-2592 ◽  
Author(s):  
Bridget S. Wilson ◽  
Stanly L. Steinberg ◽  
Karin Liederman ◽  
Janet R. Pfeiffer ◽  
Zurab Surviladze ◽  
...  

Lipid rafts isolated by detergent extraction and sucrose gradient fractionation from mast cells are enriched for the glycosylphosphatidylinositol-linked protein Thy-1, the ganglioside GM1, palmitoylated LAT, and cross-linked IgE receptors, FcϵRI. This study addresses the relationship of fractionation data to the organization of raft markers in native membranes. Immunogold labeling and electron microscopy shows there is little or no colocalization of the raft markers Thy-1, GM1, and LAT with each other or with FcϵRI on native membrane sheets prepared from unstimulated cells. External cross-linking of Thy-1 promotes coclustering of Thy-1 with LAT, but not with GM1. Thy-1 and LAT clusters occur on membrane regions without distinctive features. In contrast, external cross-linking of FcϵRI and GM1 causes their redistribution to electron-dense membrane patches independently of each other and of Thy-1. The distinctive patches that accumulate cross-linked FcϵRI and GM1 also accumulate osmium, a stain for unsaturated lipids, and are sites for coated vesicle budding. Electron microscopy reveals a more complex and dynamic topographical organization of membrane microdomains than is predicted by biochemical analysis of detergent-resistant membranes.

2003 ◽  
Vol 89 (02) ◽  
pp. 318-330 ◽  
Author(s):  
Stéphane Bodin ◽  
Cécile Viala ◽  
Ashraf Ragab ◽  
Bernard Payrastre

SummaryThe involvement of platelet FcγRIIa in heparin-associated thrombocytopenia (HIT) is now well established. However, the precise sequence of molecular events initiated by FcγRIIa cross-linking in platelets remains partly characterized. We investigated here the role of lipid rafts in the spatio-temporal organization of the FcγRIIa-dependent signaling events. Upon cross-linking, FcγRIIa relocated in rafts where the kinase Lyn and the adapter LAT were among the major phosphotyrosyl proteins. Upon stimulation by HIT sera, the second messenger phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) accumulated in rafts in a P2Y12 adenosine diphosphate (ADP) recep- tor-dependent manner. PtdIns(3,4,5)P3 was then essential to specifically recruit phospholipase Cγ2 (PLCγ2) to these membrane microdomains. Controlled disruption of rafts by methyl γ-cyclodextrin reversibly abolished PtdIns(3,4,5)P3 production, PLC activation and platelet responses induced by FcγRIIa cross-linking without affecting the tyrosine phosphorylation events. This work demonstrates that platelet rafts are essential for the integration of a key signaling complex leading to the rapid production of PtdIns(3,4,5)P3 and in turn PLCγ2 activation during HIT.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
John H. Luft

With information processing devices such as radio telescopes, microscopes or hi-fi systems, the quality of the output often is limited by distortion or noise introduced at the input stage of the device. This analogy can be extended usefully to specimen preparation for the electron microscope; fixation, which initiates the processing sequence, is the single most important step and, unfortunately, is the least well understood. Although there is an abundance of fixation mixtures recommended in the light microscopy literature, osmium tetroxide and glutaraldehyde are favored for electron microscopy. These fixatives react vigorously with proteins at the molecular level. There is clear evidence for the cross-linking of proteins both by osmium tetroxide and glutaraldehyde and cross-linking may be a necessary if not sufficient condition to define fixatives as a class.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


2012 ◽  
Vol 87 (4) ◽  
pp. 483-488
Author(s):  
N.A. Pospekhova ◽  
K.V. Regel

AbstractInvestigations were undertaken using light and transmission electron microscopy to clearly delineate the morphology of the cercomer, i.e. the protective envelopes and tail appendage, in cysticercoids ofMicrosomacanthus paraparvula, which develop in the haemocoel of the caddiswormGrensia praeterita(Insecta: Trichoptera). Two protective envelopes, the exocyst and endocyst, were identified. The non-cellular exocyst is found to consist of granular material and of thin, dense membrane-like layers, which are located parallel to each other. The exocyst of the mature metacestode tightly adjoins the outer surface of the endocyst, containing prospective parts (the scolex and the neck), except for the areas at its poles. A long tail appendage is located outside the exocyst. Evidence was found to indicate the existence of active synthetic processes occurring in the tail appendage. Non-cellular exocysts are widely distributed within metacestodes of the families Hymenolepididae and Dilepididae, and, presumably, are formed by means of glandular secretions from the oncosphere, given the early appearance of non-cellular exocysts in ontogeny.


1998 ◽  
Vol 142 (1) ◽  
pp. 69-84 ◽  
Author(s):  
A.K. Kenworthy ◽  
M. Edidin

Membrane microdomains (“lipid rafts”) enriched in glycosylphosphatidylinositol (GPI)-anchored proteins, glycosphingolipids, and cholesterol have been implicated in events ranging from membrane trafficking to signal transduction. Although there is biochemical evidence for such membrane microdomains, they have not been visualized by light or electron microscopy. To probe for microdomains enriched in GPI- anchored proteins in intact cell membranes, we used a novel form of digital microscopy, imaging fluorescence resonance energy transfer (FRET), which extends the resolution of fluorescence microscopy to the molecular level (<100 Å). We detected significant energy transfer between donor- and acceptor-labeled antibodies against the GPI-anchored protein 5′ nucleotidase (5′ NT) at the apical membrane of MDCK cells. The efficiency of energy transfer correlated strongly with the surface density of the acceptor-labeled antibody. The FRET data conformed to theoretical predictions for two-dimensional FRET between randomly distributed molecules and were inconsistent with a model in which 5′ NT is constitutively clustered. Though we cannot completely exclude the possibility that some 5′ NT is in clusters, the data imply that most 5′ NT molecules are randomly distributed across the apical surface of MDCK cells. These findings constrain current models for lipid rafts and the membrane organization of GPI-anchored proteins.


2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


PROTEOMICS ◽  
2006 ◽  
Vol 6 (24) ◽  
pp. 6447-6454 ◽  
Author(s):  
François Le Naour ◽  
Magali André ◽  
Claude Boucheix ◽  
Eric Rubinstein

Author(s):  
Yuki Koga ◽  
Tomoharu Yokooji ◽  
Ryohei Ogino ◽  
Takanori Taogoshi ◽  
Shunsuke Takahagi ◽  
...  

1997 ◽  
Vol 110 (13) ◽  
pp. 1465-1475
Author(s):  
S. Seveau ◽  
S. Lopez ◽  
P. Lesavre ◽  
J. Guichard ◽  
E.M. Cramer ◽  
...  

We investigated a possible association of leukosialin (CD43), the major surface sialoglycoprotein of leukocytes, with neutrophil cytoskeleton. We first analysed the solubility of CD43 in Triton X-100 and observed that CD43 of resting neutrophils was mostly soluble. The small proportion of CD43 molecules, which ‘spontaneously’ precipitated in Triton, appeared associated with F-actin, as demonstrated by the fact that this insolubility did not occur when cells were incubated with cytochalasin B or when F-actin was depolymerized with DNase I in the Triton precipitate. Cell stimulation with anti-CD43 mAb (MEM59) enhanced this CD43-cytoskeleton association. By immunofluorescence as well as by electron microscopy, we observed a redistribution of CD43 on the neutrophil membrane, initially in patches followed by caps, during anti-CD43 cross-linking at 37 degrees C. This capping did not occur at 4 degrees C and was inhibited by cytochalasin B and by a myosin disrupting drug butanedione monoxime, thus providing evidence that the actomyosin contracile sytem is involved in the capping and further suggesting an association of CD43 with the cytoskeleton. Some of the capped cells exhibited a front-tail polarization with CD43 caps located in the uropod at the rear of the cell. Surprisingly, colchicine and the chemotactic factor fNLPNTL which induce neutrophil polarization associated with cell motility, also resulted in a clustering of CD43 in the uropod, independently of a cross-linking of the molecule by mAbs. An intracellular redistribution of F-actin, mainly at the leading front and of myosin in the tail, was observed during CD43 clustering induced by colchicine and in cells polarized by anti-CD43 mAbs cross-linking. We conclude that neutrophil CD43 interacts with the cytoskeleton, either directly or indirectly, to redistribute in the cell uropod under antibodies stimulation or during cell polarization by colchicine, thus highly suggesting that CD43 may be involved in cell polarization.


Sign in / Sign up

Export Citation Format

Share Document